{"title":"Black-Scholes偏微分方程模拟证券定价的一种新的数值格式","authors":"Sachin Kumar, Srinivasan Natesan","doi":"10.1016/j.camwa.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces an efficient numerical method for solving the Black-Scholes partial differential equation (PDE) that governs European options. The methodology employs the backward Euler scheme to discretize the time derivative and incorporates the non-symmetric interior penalty Galerkin method for handling the spatial derivatives. The study aims to determine optimal order error estimates in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and discrete energy norm. In addition, the proposed method is used to determine Greeks in option pricing. We validate the theoretical results presented in this work with numerical experiments.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"190 ","pages":"Pages 57-71"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel numerical scheme for Black-Scholes PDEs modeling pricing securities\",\"authors\":\"Sachin Kumar, Srinivasan Natesan\",\"doi\":\"10.1016/j.camwa.2025.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article introduces an efficient numerical method for solving the Black-Scholes partial differential equation (PDE) that governs European options. The methodology employs the backward Euler scheme to discretize the time derivative and incorporates the non-symmetric interior penalty Galerkin method for handling the spatial derivatives. The study aims to determine optimal order error estimates in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and discrete energy norm. In addition, the proposed method is used to determine Greeks in option pricing. We validate the theoretical results presented in this work with numerical experiments.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"190 \",\"pages\":\"Pages 57-71\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125001488\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001488","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A novel numerical scheme for Black-Scholes PDEs modeling pricing securities
This article introduces an efficient numerical method for solving the Black-Scholes partial differential equation (PDE) that governs European options. The methodology employs the backward Euler scheme to discretize the time derivative and incorporates the non-symmetric interior penalty Galerkin method for handling the spatial derivatives. The study aims to determine optimal order error estimates in the -norm and discrete energy norm. In addition, the proposed method is used to determine Greeks in option pricing. We validate the theoretical results presented in this work with numerical experiments.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).