J.M. Pignat , A. Patelli , F.R. Herrmann , E. Kaarna , A. Joutsen , M. Hallett , D.H. Benninger
{"title":"50赫兹-重复经颅磁刺激调节帕金森病的大脑连通性","authors":"J.M. Pignat , A. Patelli , F.R. Herrmann , E. Kaarna , A. Joutsen , M. Hallett , D.H. Benninger","doi":"10.1016/j.clinph.2025.02.368","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>High-frequency repetitive transcranial magnetic stimulation (rTMS) may modulate neuronal excitability and promote the presumed “pro-kinetic” gamma frequency, while attenuating the “anti-kinetic” beta frequency. This study explores whether 50 Hz-rTMS and intermittent Theta Burst Stimulation (iTBS), of the primary motor (M1) and dorsolateral prefrontal cortex (DLPFC) enhance the gamma activity and functional connectivity within the motor circuit in Parkinson’s disease (PD).</div></div><div><h3>Methods</h3><div>We investigated pre- and post-rTMS interventional EEG in 62 PD patients following 50 Hz-rTMS and iTBS. Power spectral analysis, along with coherence and mutual information embedded in metrics of graph theory, was applied to assess the functional connectivity across the whole brain.</div></div><div><h3>Results</h3><div>We found changes in the cluster coefficient and local efficiency of gamma activity in the left M1 following iTBS, and wider-spread changes within the sensorimotor circuit following 50 Hz-rTMS. We found no changes in the power spectrum or entrainment of the gamma activity in the motor cortex or beyond.</div></div><div><h3>Conclusion</h3><div>The current 50 Hz-rTMS protocols modulate functional connectivity in PD patients, but not the power spectrum. These topological changes do not translate into clinical effects. These stimulation protocols may lack the specificity to be clinically effective.</div></div><div><h3>Significance</h3><div>High frequency rTMS provides new insights in brain connectivity in the gamma bandwidth.</div></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"174 ","pages":"Pages 96-104"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"50 Hz-Repetitive transcranial magnetic stimulation modulates brain connectivity in Parkinson’s disease\",\"authors\":\"J.M. Pignat , A. Patelli , F.R. Herrmann , E. Kaarna , A. Joutsen , M. Hallett , D.H. Benninger\",\"doi\":\"10.1016/j.clinph.2025.02.368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>High-frequency repetitive transcranial magnetic stimulation (rTMS) may modulate neuronal excitability and promote the presumed “pro-kinetic” gamma frequency, while attenuating the “anti-kinetic” beta frequency. This study explores whether 50 Hz-rTMS and intermittent Theta Burst Stimulation (iTBS), of the primary motor (M1) and dorsolateral prefrontal cortex (DLPFC) enhance the gamma activity and functional connectivity within the motor circuit in Parkinson’s disease (PD).</div></div><div><h3>Methods</h3><div>We investigated pre- and post-rTMS interventional EEG in 62 PD patients following 50 Hz-rTMS and iTBS. Power spectral analysis, along with coherence and mutual information embedded in metrics of graph theory, was applied to assess the functional connectivity across the whole brain.</div></div><div><h3>Results</h3><div>We found changes in the cluster coefficient and local efficiency of gamma activity in the left M1 following iTBS, and wider-spread changes within the sensorimotor circuit following 50 Hz-rTMS. We found no changes in the power spectrum or entrainment of the gamma activity in the motor cortex or beyond.</div></div><div><h3>Conclusion</h3><div>The current 50 Hz-rTMS protocols modulate functional connectivity in PD patients, but not the power spectrum. These topological changes do not translate into clinical effects. These stimulation protocols may lack the specificity to be clinically effective.</div></div><div><h3>Significance</h3><div>High frequency rTMS provides new insights in brain connectivity in the gamma bandwidth.</div></div>\",\"PeriodicalId\":10671,\"journal\":{\"name\":\"Clinical Neurophysiology\",\"volume\":\"174 \",\"pages\":\"Pages 96-104\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388245725004596\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388245725004596","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
50 Hz-Repetitive transcranial magnetic stimulation modulates brain connectivity in Parkinson’s disease
Objectives
High-frequency repetitive transcranial magnetic stimulation (rTMS) may modulate neuronal excitability and promote the presumed “pro-kinetic” gamma frequency, while attenuating the “anti-kinetic” beta frequency. This study explores whether 50 Hz-rTMS and intermittent Theta Burst Stimulation (iTBS), of the primary motor (M1) and dorsolateral prefrontal cortex (DLPFC) enhance the gamma activity and functional connectivity within the motor circuit in Parkinson’s disease (PD).
Methods
We investigated pre- and post-rTMS interventional EEG in 62 PD patients following 50 Hz-rTMS and iTBS. Power spectral analysis, along with coherence and mutual information embedded in metrics of graph theory, was applied to assess the functional connectivity across the whole brain.
Results
We found changes in the cluster coefficient and local efficiency of gamma activity in the left M1 following iTBS, and wider-spread changes within the sensorimotor circuit following 50 Hz-rTMS. We found no changes in the power spectrum or entrainment of the gamma activity in the motor cortex or beyond.
Conclusion
The current 50 Hz-rTMS protocols modulate functional connectivity in PD patients, but not the power spectrum. These topological changes do not translate into clinical effects. These stimulation protocols may lack the specificity to be clinically effective.
Significance
High frequency rTMS provides new insights in brain connectivity in the gamma bandwidth.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.