Shadfar Davoodi , Mohammed Al-Shargabi , David A. Wood , Mohammad Mehrad
{"title":"人工智能在油气钻井技术中的应用进展","authors":"Shadfar Davoodi , Mohammed Al-Shargabi , David A. Wood , Mohammad Mehrad","doi":"10.1016/j.asoc.2025.113129","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the petroleum upstream has increasingly relied on artificial intelligence (AI), with applications spanning machine/deep learning (ML/DL), hybrid models, and committee machine learning. Particularly in drilling engineering (DE), AI has become crucial for addressing complex subsurface challenges. Nevertheless, its implementation continues to be a significant obstacle owing to the technological, operational, and engineering challenges involved in real-time applications of DE approaches. This review examines AI technologies in DE, focusing on their practicality, performance, and associated challenges. It evaluates models for predicting drilling fluid properties, hole cleaning, rate of penetration, wellbore trajectory, fluid hydraulics, bit wear, borehole stability, subsurface problems, and fault diagnosis. It explores integrating AI models with downhole sensors and surface data for real-time/automated drilling control, alongside real-world AI application cases. It highlights the benefits of combining ML/DL with optimization algorithms in hybrid models and analyzes trends in AI research in DE through bibliometric and scientometric studies. Guidelines are provided for selecting and improving AI algorithms for various drilling applications and assessing their economic impacts. The review concludes by identifying future research directions to advance AI applications in the drilling industry.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"176 ","pages":"Article 113129"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancement of artificial intelligence applications in hydrocarbon well drilling technology: A review\",\"authors\":\"Shadfar Davoodi , Mohammed Al-Shargabi , David A. Wood , Mohammad Mehrad\",\"doi\":\"10.1016/j.asoc.2025.113129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, the petroleum upstream has increasingly relied on artificial intelligence (AI), with applications spanning machine/deep learning (ML/DL), hybrid models, and committee machine learning. Particularly in drilling engineering (DE), AI has become crucial for addressing complex subsurface challenges. Nevertheless, its implementation continues to be a significant obstacle owing to the technological, operational, and engineering challenges involved in real-time applications of DE approaches. This review examines AI technologies in DE, focusing on their practicality, performance, and associated challenges. It evaluates models for predicting drilling fluid properties, hole cleaning, rate of penetration, wellbore trajectory, fluid hydraulics, bit wear, borehole stability, subsurface problems, and fault diagnosis. It explores integrating AI models with downhole sensors and surface data for real-time/automated drilling control, alongside real-world AI application cases. It highlights the benefits of combining ML/DL with optimization algorithms in hybrid models and analyzes trends in AI research in DE through bibliometric and scientometric studies. Guidelines are provided for selecting and improving AI algorithms for various drilling applications and assessing their economic impacts. The review concludes by identifying future research directions to advance AI applications in the drilling industry.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"176 \",\"pages\":\"Article 113129\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625004405\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625004405","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Advancement of artificial intelligence applications in hydrocarbon well drilling technology: A review
In recent years, the petroleum upstream has increasingly relied on artificial intelligence (AI), with applications spanning machine/deep learning (ML/DL), hybrid models, and committee machine learning. Particularly in drilling engineering (DE), AI has become crucial for addressing complex subsurface challenges. Nevertheless, its implementation continues to be a significant obstacle owing to the technological, operational, and engineering challenges involved in real-time applications of DE approaches. This review examines AI technologies in DE, focusing on their practicality, performance, and associated challenges. It evaluates models for predicting drilling fluid properties, hole cleaning, rate of penetration, wellbore trajectory, fluid hydraulics, bit wear, borehole stability, subsurface problems, and fault diagnosis. It explores integrating AI models with downhole sensors and surface data for real-time/automated drilling control, alongside real-world AI application cases. It highlights the benefits of combining ML/DL with optimization algorithms in hybrid models and analyzes trends in AI research in DE through bibliometric and scientometric studies. Guidelines are provided for selecting and improving AI algorithms for various drilling applications and assessing their economic impacts. The review concludes by identifying future research directions to advance AI applications in the drilling industry.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.