{"title":"基于迁移学习的多目标进化算法在滑动轴承中的应用","authors":"Xuepeng Ren, Maocai Wang, Guangming Dai, Lei Peng","doi":"10.1016/j.asoc.2025.113111","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, decomposition-based multi-objective evolutionary algorithms have gained increasing attention for solving complex optimization problems. However, existing weight vector adaptation methods often struggle to balance diversity and convergence. To address this issue, we propose a multi-objective evolutionary algorithm based on transfer learning (MOEA/D-TL), which integrates joint distribution adaptation (JDA) to coordinate the populations generated by genetic and differential operators. The key innovations of MOEA/D-TL include: (1) a dual-operator framework that leverages JDA to integrate the strengths of both operators; (2) auxiliary population labeling using Pareto dominance, leveraging JDA’s characteristics; and (3) sparsity-driven adaptive weight vector adjustment to refine population distribution. Extensive experiments on 44 benchmark problems demonstrate that MOEA/D-TL outperforms nine state-of-the-art algorithms, achieving a 42%–60% improvement across three performance metrics. When applied to the optimization of sliding bearings with conflicting objectives (load capacity, heat generation, and friction coefficient), MOEA/D-TL yields solutions with broader distribution and improved uniformity compared to seven other algorithms. These results validate the algorithm’s capability to balance diversity and convergence effectively.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"176 ","pages":"Article 113111"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of multi-objective evolutionary algorithm based on transfer learning in sliding bearing\",\"authors\":\"Xuepeng Ren, Maocai Wang, Guangming Dai, Lei Peng\",\"doi\":\"10.1016/j.asoc.2025.113111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, decomposition-based multi-objective evolutionary algorithms have gained increasing attention for solving complex optimization problems. However, existing weight vector adaptation methods often struggle to balance diversity and convergence. To address this issue, we propose a multi-objective evolutionary algorithm based on transfer learning (MOEA/D-TL), which integrates joint distribution adaptation (JDA) to coordinate the populations generated by genetic and differential operators. The key innovations of MOEA/D-TL include: (1) a dual-operator framework that leverages JDA to integrate the strengths of both operators; (2) auxiliary population labeling using Pareto dominance, leveraging JDA’s characteristics; and (3) sparsity-driven adaptive weight vector adjustment to refine population distribution. Extensive experiments on 44 benchmark problems demonstrate that MOEA/D-TL outperforms nine state-of-the-art algorithms, achieving a 42%–60% improvement across three performance metrics. When applied to the optimization of sliding bearings with conflicting objectives (load capacity, heat generation, and friction coefficient), MOEA/D-TL yields solutions with broader distribution and improved uniformity compared to seven other algorithms. These results validate the algorithm’s capability to balance diversity and convergence effectively.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"176 \",\"pages\":\"Article 113111\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625004223\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625004223","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Application of multi-objective evolutionary algorithm based on transfer learning in sliding bearing
In recent years, decomposition-based multi-objective evolutionary algorithms have gained increasing attention for solving complex optimization problems. However, existing weight vector adaptation methods often struggle to balance diversity and convergence. To address this issue, we propose a multi-objective evolutionary algorithm based on transfer learning (MOEA/D-TL), which integrates joint distribution adaptation (JDA) to coordinate the populations generated by genetic and differential operators. The key innovations of MOEA/D-TL include: (1) a dual-operator framework that leverages JDA to integrate the strengths of both operators; (2) auxiliary population labeling using Pareto dominance, leveraging JDA’s characteristics; and (3) sparsity-driven adaptive weight vector adjustment to refine population distribution. Extensive experiments on 44 benchmark problems demonstrate that MOEA/D-TL outperforms nine state-of-the-art algorithms, achieving a 42%–60% improvement across three performance metrics. When applied to the optimization of sliding bearings with conflicting objectives (load capacity, heat generation, and friction coefficient), MOEA/D-TL yields solutions with broader distribution and improved uniformity compared to seven other algorithms. These results validate the algorithm’s capability to balance diversity and convergence effectively.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.