Shuo Liu , Lu Song , Shuwen Huang , Zhanhong Liu , Yang Xu , Zhiyuan Wang , He Qiu , Jing Wang , Zhiru Chen , Yumei Xiao , Hang Wang , Xiangdong Zhu , Kai Zhang , Xingdong Zhang , Hai Lin
{"title":"封装在混合水凝胶中的羟基磷灰石微球通过激活钙信号和运动蛋白途径促进皮肤再生","authors":"Shuo Liu , Lu Song , Shuwen Huang , Zhanhong Liu , Yang Xu , Zhiyuan Wang , He Qiu , Jing Wang , Zhiru Chen , Yumei Xiao , Hang Wang , Xiangdong Zhu , Kai Zhang , Xingdong Zhang , Hai Lin","doi":"10.1016/j.bioactmat.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Hydroxyapatite (HAp), traditionally recognized for its efficacy in bone regeneration, has rarely been explored for skin regeneration applications. This investigation explored HAp microspheres with distinct physicochemical properties tailored away from conventional bone regeneration parameters, and the capacity promoting skin regeneration and mitigating the aging process were investigated when encapsulated in hyaluronate hydrogels. By benchmarking against well-established dermal fillers like PMMA and PLLA, it was revealed the specific attributes of HAp that were conducive to skin regeneration, providing initial insights into the underlying mechanism. HAp enhanced the fibroblast functionality by triggering minimal adaptive immune responses and enhancing the Calcium Signaling and Motor Protein Signaling pathways. This modulation supported the production of normal collagen fibers, essential for ECM maturation and skin structural integrity. The significant ECM regeneration and remodeling capabilities exhibited by the HAp-encapsulated hybrid hydrogels suggested promising application in facial rejuvenation procedures, potentially making a breakthrough in aesthetic and reconstructive surgery.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"50 ","pages":"Pages 287-304"},"PeriodicalIF":18.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydroxyapatite microspheres encapsulated within hybrid hydrogel promote skin regeneration through the activation of Calcium Signaling and Motor Protein pathway\",\"authors\":\"Shuo Liu , Lu Song , Shuwen Huang , Zhanhong Liu , Yang Xu , Zhiyuan Wang , He Qiu , Jing Wang , Zhiru Chen , Yumei Xiao , Hang Wang , Xiangdong Zhu , Kai Zhang , Xingdong Zhang , Hai Lin\",\"doi\":\"10.1016/j.bioactmat.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydroxyapatite (HAp), traditionally recognized for its efficacy in bone regeneration, has rarely been explored for skin regeneration applications. This investigation explored HAp microspheres with distinct physicochemical properties tailored away from conventional bone regeneration parameters, and the capacity promoting skin regeneration and mitigating the aging process were investigated when encapsulated in hyaluronate hydrogels. By benchmarking against well-established dermal fillers like PMMA and PLLA, it was revealed the specific attributes of HAp that were conducive to skin regeneration, providing initial insights into the underlying mechanism. HAp enhanced the fibroblast functionality by triggering minimal adaptive immune responses and enhancing the Calcium Signaling and Motor Protein Signaling pathways. This modulation supported the production of normal collagen fibers, essential for ECM maturation and skin structural integrity. The significant ECM regeneration and remodeling capabilities exhibited by the HAp-encapsulated hybrid hydrogels suggested promising application in facial rejuvenation procedures, potentially making a breakthrough in aesthetic and reconstructive surgery.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"50 \",\"pages\":\"Pages 287-304\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25001410\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25001410","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hydroxyapatite microspheres encapsulated within hybrid hydrogel promote skin regeneration through the activation of Calcium Signaling and Motor Protein pathway
Hydroxyapatite (HAp), traditionally recognized for its efficacy in bone regeneration, has rarely been explored for skin regeneration applications. This investigation explored HAp microspheres with distinct physicochemical properties tailored away from conventional bone regeneration parameters, and the capacity promoting skin regeneration and mitigating the aging process were investigated when encapsulated in hyaluronate hydrogels. By benchmarking against well-established dermal fillers like PMMA and PLLA, it was revealed the specific attributes of HAp that were conducive to skin regeneration, providing initial insights into the underlying mechanism. HAp enhanced the fibroblast functionality by triggering minimal adaptive immune responses and enhancing the Calcium Signaling and Motor Protein Signaling pathways. This modulation supported the production of normal collagen fibers, essential for ECM maturation and skin structural integrity. The significant ECM regeneration and remodeling capabilities exhibited by the HAp-encapsulated hybrid hydrogels suggested promising application in facial rejuvenation procedures, potentially making a breakthrough in aesthetic and reconstructive surgery.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.