Wen-Ru Wu , Jing Li , Yue Lin , Fang Luo , Cui-Ying Lin , Bin Qiu , Zhen-Yu Lin , Jian Wang , Fang-Zheng Huang
{"title":"与智能手机集成的便携式平台,可通过比率荧光成像技术进行快速乳酸分析","authors":"Wen-Ru Wu , Jing Li , Yue Lin , Fang Luo , Cui-Ying Lin , Bin Qiu , Zhen-Yu Lin , Jian Wang , Fang-Zheng Huang","doi":"10.1016/j.saa.2025.126224","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a smartphone-integrated portable platform for rapid lactic acid (LA) analysis using ratiometric fluorescent imaging. The system employs a dual-emission probe composed of glutathione-modified gold nanoclusters (GSH-AuNCs) and carbon quantum dots (CDs), enabling visual detection via fluorescence color transitions under 365 nm UV excitation. As LA concentration increases, the fluorescence shifts from blue to orange. Smartphone photography and RGB color analysis reveal a nonlinear sigmoidal correlation between the red-to-blue intensity ratio (R/B) and LA concentration, modeled with a coefficient of determination (R<sup>2</sup> = 0.998). The method exhibits high selectivity and achieves recovery rates of 94.5–104.8 % in sweat samples, validated against LC-MS. This technology offers a novel, on-site solution for food quality assessment and health monitoring applications.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"338 ","pages":"Article 126224"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A portable platform integrated with smartphones for rapid lactic acid analysis via ratiometric fluorescent imaging\",\"authors\":\"Wen-Ru Wu , Jing Li , Yue Lin , Fang Luo , Cui-Ying Lin , Bin Qiu , Zhen-Yu Lin , Jian Wang , Fang-Zheng Huang\",\"doi\":\"10.1016/j.saa.2025.126224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a smartphone-integrated portable platform for rapid lactic acid (LA) analysis using ratiometric fluorescent imaging. The system employs a dual-emission probe composed of glutathione-modified gold nanoclusters (GSH-AuNCs) and carbon quantum dots (CDs), enabling visual detection via fluorescence color transitions under 365 nm UV excitation. As LA concentration increases, the fluorescence shifts from blue to orange. Smartphone photography and RGB color analysis reveal a nonlinear sigmoidal correlation between the red-to-blue intensity ratio (R/B) and LA concentration, modeled with a coefficient of determination (R<sup>2</sup> = 0.998). The method exhibits high selectivity and achieves recovery rates of 94.5–104.8 % in sweat samples, validated against LC-MS. This technology offers a novel, on-site solution for food quality assessment and health monitoring applications.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"338 \",\"pages\":\"Article 126224\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138614252500530X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138614252500530X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
A portable platform integrated with smartphones for rapid lactic acid analysis via ratiometric fluorescent imaging
This study presents a smartphone-integrated portable platform for rapid lactic acid (LA) analysis using ratiometric fluorescent imaging. The system employs a dual-emission probe composed of glutathione-modified gold nanoclusters (GSH-AuNCs) and carbon quantum dots (CDs), enabling visual detection via fluorescence color transitions under 365 nm UV excitation. As LA concentration increases, the fluorescence shifts from blue to orange. Smartphone photography and RGB color analysis reveal a nonlinear sigmoidal correlation between the red-to-blue intensity ratio (R/B) and LA concentration, modeled with a coefficient of determination (R2 = 0.998). The method exhibits high selectivity and achieves recovery rates of 94.5–104.8 % in sweat samples, validated against LC-MS. This technology offers a novel, on-site solution for food quality assessment and health monitoring applications.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.