基于矢量处理快速评估复杂城市形态中建筑表面的太阳能潜力

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Xinwei Zhuang , Guoquan Lv , Zilong Zhao , Luisa Caldas
{"title":"基于矢量处理快速评估复杂城市形态中建筑表面的太阳能潜力","authors":"Xinwei Zhuang ,&nbsp;Guoquan Lv ,&nbsp;Zilong Zhao ,&nbsp;Luisa Caldas","doi":"10.1016/j.solener.2025.113482","DOIUrl":null,"url":null,"abstract":"<div><div>Solar energy in the urban environment serves as a promising solution to address the challenges of increasing electricity demand amidst climate change and extreme weather events. Yet, the assessment of urban solar energy potential faces a critical trade-off between accuracy and computational efficiency, where existing methods either oversimplify building interactions or become computationally prohibitive at scale. We present a vector-based algorithm for rapid urban-scale solar potential calculations that achieves high accuracy with minimal computational requirements. The method achieves facade-level solar radiation estimates with 99.83% accuracy (mean absolute percentage error: 0.17%) compared to traditional simulation approaches, while reducing computation time by two orders of magnitude (0.05-0.62 s per building depending on the data size). Validated through case studies in San Francisco’s diverse urban morphologies, the algorithm efficiently handles complex building geometries and mutual shading effects. This advancement enables high-resolution solar potential assessment at an urban scale, facilitating subsequent research in urban energy modeling and distributed energy planning applications, and paving the way for accurate and efficient urban energy planning and sustainable development strategies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"294 ","pages":"Article 113482"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid assessment of solar potential for building surfaces in complex urban morphologies based on vector processing\",\"authors\":\"Xinwei Zhuang ,&nbsp;Guoquan Lv ,&nbsp;Zilong Zhao ,&nbsp;Luisa Caldas\",\"doi\":\"10.1016/j.solener.2025.113482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar energy in the urban environment serves as a promising solution to address the challenges of increasing electricity demand amidst climate change and extreme weather events. Yet, the assessment of urban solar energy potential faces a critical trade-off between accuracy and computational efficiency, where existing methods either oversimplify building interactions or become computationally prohibitive at scale. We present a vector-based algorithm for rapid urban-scale solar potential calculations that achieves high accuracy with minimal computational requirements. The method achieves facade-level solar radiation estimates with 99.83% accuracy (mean absolute percentage error: 0.17%) compared to traditional simulation approaches, while reducing computation time by two orders of magnitude (0.05-0.62 s per building depending on the data size). Validated through case studies in San Francisco’s diverse urban morphologies, the algorithm efficiently handles complex building geometries and mutual shading effects. This advancement enables high-resolution solar potential assessment at an urban scale, facilitating subsequent research in urban energy modeling and distributed energy planning applications, and paving the way for accurate and efficient urban energy planning and sustainable development strategies.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"294 \",\"pages\":\"Article 113482\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25002452\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25002452","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在气候变化和极端天气事件中,城市环境中的太阳能是解决日益增长的电力需求挑战的一个有希望的解决方案。然而,城市太阳能潜力的评估面临着准确性和计算效率之间的关键权衡,现有的方法要么过于简化建筑物的相互作用,要么在规模上变得难以计算。我们提出了一种基于矢量的快速城市尺度太阳能势计算算法,该算法以最小的计算需求实现了高精度。与传统的模拟方法相比,该方法以99.83%的准确率(平均绝对百分比误差:0.17%)实现了立面水平的太阳辐射估算,同时将计算时间减少了两个数量级(根据数据大小,每个建筑物的计算时间为0.05-0.62秒)。通过对旧金山不同城市形态的案例研究,该算法有效地处理了复杂的建筑几何形状和相互遮阳效果。这一进展使城市尺度的高分辨率太阳能潜力评估成为可能,促进了城市能源建模和分布式能源规划应用的后续研究,并为准确高效的城市能源规划和可持续发展战略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid assessment of solar potential for building surfaces in complex urban morphologies based on vector processing

Rapid assessment of solar potential for building surfaces in complex urban morphologies based on vector processing
Solar energy in the urban environment serves as a promising solution to address the challenges of increasing electricity demand amidst climate change and extreme weather events. Yet, the assessment of urban solar energy potential faces a critical trade-off between accuracy and computational efficiency, where existing methods either oversimplify building interactions or become computationally prohibitive at scale. We present a vector-based algorithm for rapid urban-scale solar potential calculations that achieves high accuracy with minimal computational requirements. The method achieves facade-level solar radiation estimates with 99.83% accuracy (mean absolute percentage error: 0.17%) compared to traditional simulation approaches, while reducing computation time by two orders of magnitude (0.05-0.62 s per building depending on the data size). Validated through case studies in San Francisco’s diverse urban morphologies, the algorithm efficiently handles complex building geometries and mutual shading effects. This advancement enables high-resolution solar potential assessment at an urban scale, facilitating subsequent research in urban energy modeling and distributed energy planning applications, and paving the way for accurate and efficient urban energy planning and sustainable development strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信