Yu-Ying He , Dan-Dan Jin , Bo Li , Yue Li , Meng-Yuan Li , Gui-Jun Yan , Zeng-Ming Yang
{"title":"肌苷单磷酸脱氢酶2嗜细胞性在小鼠和人去个体化过程中的调控和功能","authors":"Yu-Ying He , Dan-Dan Jin , Bo Li , Yue Li , Meng-Yuan Li , Gui-Jun Yan , Zeng-Ming Yang","doi":"10.1016/j.cellsig.2025.111795","DOIUrl":null,"url":null,"abstract":"<div><div>Decidualization is essential for establishing pregnancy in both mice and humans. Cellular stresses, including nucleolar stress and DNA damage, are involved in this process. Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme for de novo guanosine triphosphate (GTP) synthesis, forms membrane-free macromolecular structures called “cytoophidia” under specific conditions. However, whether IMPDH cytoophidia are present during decidualization remains unknown. In this study, we found that IMPDH2 cytoophidia are primarily detected in mouse decidual cells during early pregnancy. On day 5 of pregnancy, more IMPDH2 cytoophidia are observed at implantation sites than at inter-implantation sites. Physiologically, uteri activated by estrogen exhibit more IMPDH2 cytoophidia than those maintained in a delayed state by progesterone. Although GTP is required for in vitro decidualization in mice, elevated GTP level impairs this process. Furthermore, IMPDH2 cytoophidia can induce nucleolar stress and DNA damage in mice. In the human endometrium, IMPDH2 cytoophidia are observed during the menstrual cycle, particularly enriched in the secretory phase. They promote human decidualization and naturally enhance cellular senescence. Our findings highlight the physiological relevance of IMPDH2 cytoophidia during early pregnancy in mice and humans.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"132 ","pages":"Article 111795"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation and function of inosine monophosphate dehydrogenase 2 cytoophidia during mouse and human decidualization\",\"authors\":\"Yu-Ying He , Dan-Dan Jin , Bo Li , Yue Li , Meng-Yuan Li , Gui-Jun Yan , Zeng-Ming Yang\",\"doi\":\"10.1016/j.cellsig.2025.111795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Decidualization is essential for establishing pregnancy in both mice and humans. Cellular stresses, including nucleolar stress and DNA damage, are involved in this process. Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme for de novo guanosine triphosphate (GTP) synthesis, forms membrane-free macromolecular structures called “cytoophidia” under specific conditions. However, whether IMPDH cytoophidia are present during decidualization remains unknown. In this study, we found that IMPDH2 cytoophidia are primarily detected in mouse decidual cells during early pregnancy. On day 5 of pregnancy, more IMPDH2 cytoophidia are observed at implantation sites than at inter-implantation sites. Physiologically, uteri activated by estrogen exhibit more IMPDH2 cytoophidia than those maintained in a delayed state by progesterone. Although GTP is required for in vitro decidualization in mice, elevated GTP level impairs this process. Furthermore, IMPDH2 cytoophidia can induce nucleolar stress and DNA damage in mice. In the human endometrium, IMPDH2 cytoophidia are observed during the menstrual cycle, particularly enriched in the secretory phase. They promote human decidualization and naturally enhance cellular senescence. Our findings highlight the physiological relevance of IMPDH2 cytoophidia during early pregnancy in mice and humans.</div></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\"132 \",\"pages\":\"Article 111795\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898656825002086\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825002086","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Regulation and function of inosine monophosphate dehydrogenase 2 cytoophidia during mouse and human decidualization
Decidualization is essential for establishing pregnancy in both mice and humans. Cellular stresses, including nucleolar stress and DNA damage, are involved in this process. Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme for de novo guanosine triphosphate (GTP) synthesis, forms membrane-free macromolecular structures called “cytoophidia” under specific conditions. However, whether IMPDH cytoophidia are present during decidualization remains unknown. In this study, we found that IMPDH2 cytoophidia are primarily detected in mouse decidual cells during early pregnancy. On day 5 of pregnancy, more IMPDH2 cytoophidia are observed at implantation sites than at inter-implantation sites. Physiologically, uteri activated by estrogen exhibit more IMPDH2 cytoophidia than those maintained in a delayed state by progesterone. Although GTP is required for in vitro decidualization in mice, elevated GTP level impairs this process. Furthermore, IMPDH2 cytoophidia can induce nucleolar stress and DNA damage in mice. In the human endometrium, IMPDH2 cytoophidia are observed during the menstrual cycle, particularly enriched in the secretory phase. They promote human decidualization and naturally enhance cellular senescence. Our findings highlight the physiological relevance of IMPDH2 cytoophidia during early pregnancy in mice and humans.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.