{"title":"关于循环和合并树","authors":"Julian Brüggemann , Nicholas A. Scoville","doi":"10.1016/j.jpaa.2025.107967","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we extend the notion of a merge tree to that of a generalized merge tree, a merge tree that includes 1-dimensional cycle birth information. Given a discrete Morse function on a 1-dimensional CW complex, i.e., a multigraph, we construct the induced generalized merge tree. We give several notions of equivalence of discrete Morse functions based on the induced generalized merge tree and how these notions relate to one another. As a consequence, we obtain a complete solution to the inverse problem between discrete Morse functions on 1-dimensional CW complexes and generalized merge trees. After characterizing which generalized merge trees can be induced by a discrete Morse function on a simple graph, we give an algorithm based on the induced generalized merge tree of a discrete Morse function <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></math></span> that cancels the critical cells of <em>f</em> and replaces it with an optimal discrete Morse function.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107967"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On cycles and merge trees\",\"authors\":\"Julian Brüggemann , Nicholas A. Scoville\",\"doi\":\"10.1016/j.jpaa.2025.107967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we extend the notion of a merge tree to that of a generalized merge tree, a merge tree that includes 1-dimensional cycle birth information. Given a discrete Morse function on a 1-dimensional CW complex, i.e., a multigraph, we construct the induced generalized merge tree. We give several notions of equivalence of discrete Morse functions based on the induced generalized merge tree and how these notions relate to one another. As a consequence, we obtain a complete solution to the inverse problem between discrete Morse functions on 1-dimensional CW complexes and generalized merge trees. After characterizing which generalized merge trees can be induced by a discrete Morse function on a simple graph, we give an algorithm based on the induced generalized merge tree of a discrete Morse function <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></math></span> that cancels the critical cells of <em>f</em> and replaces it with an optimal discrete Morse function.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 107967\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001069\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001069","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we extend the notion of a merge tree to that of a generalized merge tree, a merge tree that includes 1-dimensional cycle birth information. Given a discrete Morse function on a 1-dimensional CW complex, i.e., a multigraph, we construct the induced generalized merge tree. We give several notions of equivalence of discrete Morse functions based on the induced generalized merge tree and how these notions relate to one another. As a consequence, we obtain a complete solution to the inverse problem between discrete Morse functions on 1-dimensional CW complexes and generalized merge trees. After characterizing which generalized merge trees can be induced by a discrete Morse function on a simple graph, we give an algorithm based on the induced generalized merge tree of a discrete Morse function that cancels the critical cells of f and replaces it with an optimal discrete Morse function.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.