分析在钻孔热交换器中使用一维流体模型的准确性和计算效率

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS
A. Holmes, C. Millar, M.F. Lightstone
{"title":"分析在钻孔热交换器中使用一维流体模型的准确性和计算效率","authors":"A. Holmes,&nbsp;C. Millar,&nbsp;M.F. Lightstone","doi":"10.1016/j.geothermics.2025.103343","DOIUrl":null,"url":null,"abstract":"<div><div>This paper compares the accuracy of a one-dimensional fluid model to that of a fully three-dimensional model for the simulation of a thermal response test performed on a single borehole heat exchanger. The simplification of the fluid domain within the one-dimensional model allows for reduced computational time while still maintaining an accurate prediction of transient fluid temperature. The model uses a simplified one-dimensional fluid model while solving the full three-dimensional transient heat conduction equations in the borehole heat exchanger and surrounding ground. A symmetry plane is implemented to further reduce the computational effort, and the model and equation adjustments necessary to merge the use of symmetry planes and 1D linear elements along the central plane without loss of model accuracy is explained in detail. The proposed model is compared to a full CFD model and validated using experimental data for a constant heat rate test, commonly known as a thermal response test, to ensure no accuracy is lost due to model adjustments. Additionally, the computation times are compared for each case to quantify the time savings that result from model implementation.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"130 ","pages":"Article 103343"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of the accuracy and computational efficiency of the use of one-dimensional fluid models in borehole heat exchangers\",\"authors\":\"A. Holmes,&nbsp;C. Millar,&nbsp;M.F. Lightstone\",\"doi\":\"10.1016/j.geothermics.2025.103343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper compares the accuracy of a one-dimensional fluid model to that of a fully three-dimensional model for the simulation of a thermal response test performed on a single borehole heat exchanger. The simplification of the fluid domain within the one-dimensional model allows for reduced computational time while still maintaining an accurate prediction of transient fluid temperature. The model uses a simplified one-dimensional fluid model while solving the full three-dimensional transient heat conduction equations in the borehole heat exchanger and surrounding ground. A symmetry plane is implemented to further reduce the computational effort, and the model and equation adjustments necessary to merge the use of symmetry planes and 1D linear elements along the central plane without loss of model accuracy is explained in detail. The proposed model is compared to a full CFD model and validated using experimental data for a constant heat rate test, commonly known as a thermal response test, to ensure no accuracy is lost due to model adjustments. Additionally, the computation times are compared for each case to quantify the time savings that result from model implementation.</div></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"130 \",\"pages\":\"Article 103343\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650525000951\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650525000951","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了一维流体模型与全三维模型在模拟单孔热交换器热响应试验中的精度。一维模型中流体域的简化允许减少计算时间,同时仍然保持对瞬态流体温度的准确预测。该模型采用简化的一维流体模型,求解井内换热器及周围地面的全三维瞬态热传导方程。为了进一步减少计算工作量,实现了对称平面,并详细解释了在不损失模型精度的情况下,将对称平面和沿中心平面的一维线性元素合并使用所需的模型和方程调整。将提出的模型与完整的CFD模型进行比较,并使用恒定热速率测试(通常称为热响应测试)的实验数据进行验证,以确保模型调整不会损失准确性。此外,对每种情况的计算时间进行比较,以量化模型实现所节省的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of the accuracy and computational efficiency of the use of one-dimensional fluid models in borehole heat exchangers
This paper compares the accuracy of a one-dimensional fluid model to that of a fully three-dimensional model for the simulation of a thermal response test performed on a single borehole heat exchanger. The simplification of the fluid domain within the one-dimensional model allows for reduced computational time while still maintaining an accurate prediction of transient fluid temperature. The model uses a simplified one-dimensional fluid model while solving the full three-dimensional transient heat conduction equations in the borehole heat exchanger and surrounding ground. A symmetry plane is implemented to further reduce the computational effort, and the model and equation adjustments necessary to merge the use of symmetry planes and 1D linear elements along the central plane without loss of model accuracy is explained in detail. The proposed model is compared to a full CFD model and validated using experimental data for a constant heat rate test, commonly known as a thermal response test, to ensure no accuracy is lost due to model adjustments. Additionally, the computation times are compared for each case to quantify the time savings that result from model implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信