Deyong Sun , Jianchao Zou , Yifeng Xiong , Wanrui Zhang , Chongrui Tang , Weizhao Zhang
{"title":"薄编织复合材料预浸料预成型和固结过程的三维超粘弹性耦合本构模型","authors":"Deyong Sun , Jianchao Zou , Yifeng Xiong , Wanrui Zhang , Chongrui Tang , Weizhao Zhang","doi":"10.1016/j.compositesb.2025.112514","DOIUrl":null,"url":null,"abstract":"<div><div>The prepreg compression molding (PCM) has emerged as an effective method for mass production of woven composite parts with complex geometry. The two coupling effects between non-uniform thickness deformation and yarn angle variation, viscoelastic compaction modulus and yarn angle variation due to preforming, which are often neglected in existing models, are actually critical in correct prediction for quality of final composite parts. To address these issues, a coupled 3D hyper-viscoelastic constitutive model was developed, and its efficacy was validated through bias-extension tests, confirming its capability to account for the coupling effect related to initial thickness variations caused by yarn angle change. Additionally, out-of-plane compaction deformation tests demonstrated the model's ability to incorporate variations in compaction material properties under different yarn angles, further affirming its applicability. To further test performance of the constitutive model, benchmark single-dome PCM experiments were conducted with thin woven prepregs. Comparative analysis of experimental and modeling results revealed the superb prediction accuracy of the model for part geometry and yarn angle distribution, respectively, after PCM. Furthermore, this new model significantly decreases the relative error of thickness prediction to 11.7 % compared to that of 34.2 % of the previous decoupled model. As a result, this newly established model can effectively capture the coupled material responses throughout the preforming and consolidation stages, assisting more realistic representation of the PCM process.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"301 ","pages":"Article 112514"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coupled 3D hyper-viscoelastic constitutive model for thin woven composite prepregs in preforming and consolidation\",\"authors\":\"Deyong Sun , Jianchao Zou , Yifeng Xiong , Wanrui Zhang , Chongrui Tang , Weizhao Zhang\",\"doi\":\"10.1016/j.compositesb.2025.112514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The prepreg compression molding (PCM) has emerged as an effective method for mass production of woven composite parts with complex geometry. The two coupling effects between non-uniform thickness deformation and yarn angle variation, viscoelastic compaction modulus and yarn angle variation due to preforming, which are often neglected in existing models, are actually critical in correct prediction for quality of final composite parts. To address these issues, a coupled 3D hyper-viscoelastic constitutive model was developed, and its efficacy was validated through bias-extension tests, confirming its capability to account for the coupling effect related to initial thickness variations caused by yarn angle change. Additionally, out-of-plane compaction deformation tests demonstrated the model's ability to incorporate variations in compaction material properties under different yarn angles, further affirming its applicability. To further test performance of the constitutive model, benchmark single-dome PCM experiments were conducted with thin woven prepregs. Comparative analysis of experimental and modeling results revealed the superb prediction accuracy of the model for part geometry and yarn angle distribution, respectively, after PCM. Furthermore, this new model significantly decreases the relative error of thickness prediction to 11.7 % compared to that of 34.2 % of the previous decoupled model. As a result, this newly established model can effectively capture the coupled material responses throughout the preforming and consolidation stages, assisting more realistic representation of the PCM process.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"301 \",\"pages\":\"Article 112514\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825004159\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004159","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A coupled 3D hyper-viscoelastic constitutive model for thin woven composite prepregs in preforming and consolidation
The prepreg compression molding (PCM) has emerged as an effective method for mass production of woven composite parts with complex geometry. The two coupling effects between non-uniform thickness deformation and yarn angle variation, viscoelastic compaction modulus and yarn angle variation due to preforming, which are often neglected in existing models, are actually critical in correct prediction for quality of final composite parts. To address these issues, a coupled 3D hyper-viscoelastic constitutive model was developed, and its efficacy was validated through bias-extension tests, confirming its capability to account for the coupling effect related to initial thickness variations caused by yarn angle change. Additionally, out-of-plane compaction deformation tests demonstrated the model's ability to incorporate variations in compaction material properties under different yarn angles, further affirming its applicability. To further test performance of the constitutive model, benchmark single-dome PCM experiments were conducted with thin woven prepregs. Comparative analysis of experimental and modeling results revealed the superb prediction accuracy of the model for part geometry and yarn angle distribution, respectively, after PCM. Furthermore, this new model significantly decreases the relative error of thickness prediction to 11.7 % compared to that of 34.2 % of the previous decoupled model. As a result, this newly established model can effectively capture the coupled material responses throughout the preforming and consolidation stages, assisting more realistic representation of the PCM process.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.