Xiang Li , Zeming Fan , Qijie Zhai , Gang Wang , Xiang Lu , Hanyang Qian , Rui Cai , Daqiang Jiang , Jian Liu
{"title":"激光粉末床熔合Cu71Al17.5Mn11.5形状记忆合金的超弹性增强和显著的弹热效应","authors":"Xiang Li , Zeming Fan , Qijie Zhai , Gang Wang , Xiang Lu , Hanyang Qian , Rui Cai , Daqiang Jiang , Jian Liu","doi":"10.1016/j.addlet.2025.100281","DOIUrl":null,"url":null,"abstract":"<div><div>Cu-based shape memory alloys (SMAs) with highly oriented columnar grains and high densities are promising candidates for solid-state refrigeration. In this work, the Cu<sub>71</sub>Al<sub>17.5</sub>Mn<sub>11.5</sub> alloys with a strong 〈001〉 texture columnar grains and a high relative density were fabricated using laser-based powder bed fusion of metals (PBF-LB/M) technique. The Cu<sub>71</sub>Al<sub>17.5</sub>Mn<sub>11.5</sub> alloys exhibited enhanced superelasticity, with a superelastic strain of 6.2 %. A maximum recoverable strain of 8.5 % was achieved under 9 % compressive loading, which includes both superelastic and elastic strain components. Additionally, a notable elastocaloric temperature change of 8.0 K was achieved upon fast unloading under adiabatic conditions. The phase transformation behavior has been systematically investigated by the digital image correlation (DIC) and the transmission wide-angle X-ray diffraction measurements. The current results suggest that the additive manufacturing could be a promising route for near-net-shape high-performance Cu-based elastocaloric refrigerants.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100281"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced superelasticity and notable elastocaloric effect of Cu71Al17.5Mn11.5 shape memory alloys by laser-based powder bed fusion\",\"authors\":\"Xiang Li , Zeming Fan , Qijie Zhai , Gang Wang , Xiang Lu , Hanyang Qian , Rui Cai , Daqiang Jiang , Jian Liu\",\"doi\":\"10.1016/j.addlet.2025.100281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cu-based shape memory alloys (SMAs) with highly oriented columnar grains and high densities are promising candidates for solid-state refrigeration. In this work, the Cu<sub>71</sub>Al<sub>17.5</sub>Mn<sub>11.5</sub> alloys with a strong 〈001〉 texture columnar grains and a high relative density were fabricated using laser-based powder bed fusion of metals (PBF-LB/M) technique. The Cu<sub>71</sub>Al<sub>17.5</sub>Mn<sub>11.5</sub> alloys exhibited enhanced superelasticity, with a superelastic strain of 6.2 %. A maximum recoverable strain of 8.5 % was achieved under 9 % compressive loading, which includes both superelastic and elastic strain components. Additionally, a notable elastocaloric temperature change of 8.0 K was achieved upon fast unloading under adiabatic conditions. The phase transformation behavior has been systematically investigated by the digital image correlation (DIC) and the transmission wide-angle X-ray diffraction measurements. The current results suggest that the additive manufacturing could be a promising route for near-net-shape high-performance Cu-based elastocaloric refrigerants.</div></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"13 \",\"pages\":\"Article 100281\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369025000155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Enhanced superelasticity and notable elastocaloric effect of Cu71Al17.5Mn11.5 shape memory alloys by laser-based powder bed fusion
Cu-based shape memory alloys (SMAs) with highly oriented columnar grains and high densities are promising candidates for solid-state refrigeration. In this work, the Cu71Al17.5Mn11.5 alloys with a strong 〈001〉 texture columnar grains and a high relative density were fabricated using laser-based powder bed fusion of metals (PBF-LB/M) technique. The Cu71Al17.5Mn11.5 alloys exhibited enhanced superelasticity, with a superelastic strain of 6.2 %. A maximum recoverable strain of 8.5 % was achieved under 9 % compressive loading, which includes both superelastic and elastic strain components. Additionally, a notable elastocaloric temperature change of 8.0 K was achieved upon fast unloading under adiabatic conditions. The phase transformation behavior has been systematically investigated by the digital image correlation (DIC) and the transmission wide-angle X-ray diffraction measurements. The current results suggest that the additive manufacturing could be a promising route for near-net-shape high-performance Cu-based elastocaloric refrigerants.