Jiahao Wu, Feng Cao, Manjia Li, Wei Liu*, Kohji Ohno and To Ngai*,
{"title":"直接测量齐聚物和非离子聚合物刷附近被忽视的长程相互作用","authors":"Jiahao Wu, Feng Cao, Manjia Li, Wei Liu*, Kohji Ohno and To Ngai*, ","doi":"10.1021/acsmacrolett.5c0004310.1021/acsmacrolett.5c00043","DOIUrl":null,"url":null,"abstract":"<p >Current research on the antifouling mechanisms of “electrically neutral” polymer brushes predominantly emphasizes thermodynamically unfavorable short-range interactions. However, our study reveals the critical importance of long-range interactions. By utilizing zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and nonionic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) brushes as model systems, we employed total internal reflection microscopy (TIRM) to directly measure interactions with contaminants. Surprisingly, even seemingly neutral polymers exhibit significant electrostatic interactions with nearby contaminants─a fact that has been largely overlooked in this field. Our findings challenge the prevailing assumption of charge absence on surfaces grafted with antifouling polymer brushes and investigate how external stimuli (such as ionic strength and polymer conformation) affect these long-range interactions. In conclusion, this study presents a novel approach to exploring long-range interactions near polymer-grafted surfaces, offering valuable insights for the development of antifouling materials and biomedical applications in the future.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 4","pages":"502–508 502–508"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmacrolett.5c00043","citationCount":"0","resultStr":"{\"title\":\"Direct Measurements of Overlooked Long-Range Interactions near Zwitterionic and Nonionic Polymer Brushes\",\"authors\":\"Jiahao Wu, Feng Cao, Manjia Li, Wei Liu*, Kohji Ohno and To Ngai*, \",\"doi\":\"10.1021/acsmacrolett.5c0004310.1021/acsmacrolett.5c00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Current research on the antifouling mechanisms of “electrically neutral” polymer brushes predominantly emphasizes thermodynamically unfavorable short-range interactions. However, our study reveals the critical importance of long-range interactions. By utilizing zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and nonionic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) brushes as model systems, we employed total internal reflection microscopy (TIRM) to directly measure interactions with contaminants. Surprisingly, even seemingly neutral polymers exhibit significant electrostatic interactions with nearby contaminants─a fact that has been largely overlooked in this field. Our findings challenge the prevailing assumption of charge absence on surfaces grafted with antifouling polymer brushes and investigate how external stimuli (such as ionic strength and polymer conformation) affect these long-range interactions. In conclusion, this study presents a novel approach to exploring long-range interactions near polymer-grafted surfaces, offering valuable insights for the development of antifouling materials and biomedical applications in the future.</p>\",\"PeriodicalId\":18,\"journal\":{\"name\":\"ACS Macro Letters\",\"volume\":\"14 4\",\"pages\":\"502–508 502–508\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmacrolett.5c00043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Macro Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmacrolett.5c00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.5c00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Direct Measurements of Overlooked Long-Range Interactions near Zwitterionic and Nonionic Polymer Brushes
Current research on the antifouling mechanisms of “electrically neutral” polymer brushes predominantly emphasizes thermodynamically unfavorable short-range interactions. However, our study reveals the critical importance of long-range interactions. By utilizing zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and nonionic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) brushes as model systems, we employed total internal reflection microscopy (TIRM) to directly measure interactions with contaminants. Surprisingly, even seemingly neutral polymers exhibit significant electrostatic interactions with nearby contaminants─a fact that has been largely overlooked in this field. Our findings challenge the prevailing assumption of charge absence on surfaces grafted with antifouling polymer brushes and investigate how external stimuli (such as ionic strength and polymer conformation) affect these long-range interactions. In conclusion, this study presents a novel approach to exploring long-range interactions near polymer-grafted surfaces, offering valuable insights for the development of antifouling materials and biomedical applications in the future.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.