Huaying Liu, Qisong Xing, Chenyu Zhu, Qineng Wang, Keding Lu, Song Guo, Zhijun Wu, Min Hu, Shao-Meng Li and Maosheng Yao*,
{"title":"暴露于大气臭氧氧化的内毒素会大大增加贫血","authors":"Huaying Liu, Qisong Xing, Chenyu Zhu, Qineng Wang, Keding Lu, Song Guo, Zhijun Wu, Min Hu, Shao-Meng Li and Maosheng Yao*, ","doi":"10.1021/acs.est.4c1458910.1021/acs.est.4c14589","DOIUrl":null,"url":null,"abstract":"<p >Endotoxin (lipopolysaccharide, LPS), widely distributed in the atmospheric environment with strong immunogenicity, is an important biological component of ambient particulate matter. However, whether LPS participates in atmospheric chemistry and how its biological health impacts change with the relevant processes are poorly understood. In this study, we employed the rat model to investigate the impact of ozone oxidation on the biological toxicity of LPS and used Fourier transform infrared spectroscopy and high-resolution electrospray mass spectrometry to study the underlying reaction mechanisms. The results show that the LPS can be oxidized by ozone and the resulting reactant greatly enhanced inflammatory anemia with a 177% capacity increase despite a minor influence on its immunogenicity. In contrast to the control, rats exposed to oxidized LPS were observed to release characteristic exhaled biomarkers, indicating that the formed reactant indeed altered the biological effects of LPS. Mechanistic investigation reveals that ozone oxidation of the hydroxyl group in the key toxic part of LPS, kdo<sub>2</sub>-lipid A, can cause dysregulation of iron homeostasis in rats, which is the mechanism of oxidized LPS-enhanced anemia. Unfortunately, these chemical structure changes and the resulting health impacts cannot be detected by the conventional LPS analysis method. This study highlights the changes in the toxicity of LPS and its health impacts when oxidized by ozone and the need to broadly consider the involvement of bioaerosol in atmospheric chemistry.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 14","pages":"7015–7027 7015–7027"},"PeriodicalIF":11.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to Endotoxin Oxidized by Atmospheric Ozone Greatly Enhances Anemia\",\"authors\":\"Huaying Liu, Qisong Xing, Chenyu Zhu, Qineng Wang, Keding Lu, Song Guo, Zhijun Wu, Min Hu, Shao-Meng Li and Maosheng Yao*, \",\"doi\":\"10.1021/acs.est.4c1458910.1021/acs.est.4c14589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Endotoxin (lipopolysaccharide, LPS), widely distributed in the atmospheric environment with strong immunogenicity, is an important biological component of ambient particulate matter. However, whether LPS participates in atmospheric chemistry and how its biological health impacts change with the relevant processes are poorly understood. In this study, we employed the rat model to investigate the impact of ozone oxidation on the biological toxicity of LPS and used Fourier transform infrared spectroscopy and high-resolution electrospray mass spectrometry to study the underlying reaction mechanisms. The results show that the LPS can be oxidized by ozone and the resulting reactant greatly enhanced inflammatory anemia with a 177% capacity increase despite a minor influence on its immunogenicity. In contrast to the control, rats exposed to oxidized LPS were observed to release characteristic exhaled biomarkers, indicating that the formed reactant indeed altered the biological effects of LPS. Mechanistic investigation reveals that ozone oxidation of the hydroxyl group in the key toxic part of LPS, kdo<sub>2</sub>-lipid A, can cause dysregulation of iron homeostasis in rats, which is the mechanism of oxidized LPS-enhanced anemia. Unfortunately, these chemical structure changes and the resulting health impacts cannot be detected by the conventional LPS analysis method. This study highlights the changes in the toxicity of LPS and its health impacts when oxidized by ozone and the need to broadly consider the involvement of bioaerosol in atmospheric chemistry.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 14\",\"pages\":\"7015–7027 7015–7027\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c14589\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c14589","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Exposure to Endotoxin Oxidized by Atmospheric Ozone Greatly Enhances Anemia
Endotoxin (lipopolysaccharide, LPS), widely distributed in the atmospheric environment with strong immunogenicity, is an important biological component of ambient particulate matter. However, whether LPS participates in atmospheric chemistry and how its biological health impacts change with the relevant processes are poorly understood. In this study, we employed the rat model to investigate the impact of ozone oxidation on the biological toxicity of LPS and used Fourier transform infrared spectroscopy and high-resolution electrospray mass spectrometry to study the underlying reaction mechanisms. The results show that the LPS can be oxidized by ozone and the resulting reactant greatly enhanced inflammatory anemia with a 177% capacity increase despite a minor influence on its immunogenicity. In contrast to the control, rats exposed to oxidized LPS were observed to release characteristic exhaled biomarkers, indicating that the formed reactant indeed altered the biological effects of LPS. Mechanistic investigation reveals that ozone oxidation of the hydroxyl group in the key toxic part of LPS, kdo2-lipid A, can cause dysregulation of iron homeostasis in rats, which is the mechanism of oxidized LPS-enhanced anemia. Unfortunately, these chemical structure changes and the resulting health impacts cannot be detected by the conventional LPS analysis method. This study highlights the changes in the toxicity of LPS and its health impacts when oxidized by ozone and the need to broadly consider the involvement of bioaerosol in atmospheric chemistry.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.