Junsheng Zhang, Yang Li, Luofei Li, Ying Li*, Yi Cao* and Hai Lei*,
{"title":"细胞表面蛋白单分子力谱的蛋氨酸特异性生物偶联","authors":"Junsheng Zhang, Yang Li, Luofei Li, Ying Li*, Yi Cao* and Hai Lei*, ","doi":"10.1021/acsnano.5c0022410.1021/acsnano.5c00224","DOIUrl":null,"url":null,"abstract":"<p >Cell surface proteins play crucial roles in various cellular processes, including intercellular communication, adhesion, and immune responses. However, investigating these proteins using single-molecule force spectroscopy (SMFS) has been hindered by challenges in site-specific protein modification while preserving their native state. Here, we introduce a methionine-specific bioconjugation strategy utilizing a bespoke hypervalent iodine reagent for highly selective, rapid, and robust methionine labeling. Since methionine is often the first amino acid incorporated into proteins via initiator tRNA, this approach enables precise N-terminal labeling and attachment, facilitating more reliable SMFS studies. The resulting covalent linkage remains intact during mechanical unfolding or conformational changes of proteins, with a mechanical stability exceeding 600 pN, allowing accurate measurements before detachment from AFM cantilever tips or cell surfaces. Additionally, this method improves sampling rates and data quality. We successfully applied this technique to light-induced protein printing and natural surface protein studies, demonstrating its potential for advancing protein mechanics research in living cells. This strategy provides significant advantages for SMFS in the study of complex cellular systems.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 14","pages":"14177–14186 14177–14186"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methionine-Specific Bioconjugation for Single-Molecule Force Spectroscopy of Cell Surface Proteins\",\"authors\":\"Junsheng Zhang, Yang Li, Luofei Li, Ying Li*, Yi Cao* and Hai Lei*, \",\"doi\":\"10.1021/acsnano.5c0022410.1021/acsnano.5c00224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cell surface proteins play crucial roles in various cellular processes, including intercellular communication, adhesion, and immune responses. However, investigating these proteins using single-molecule force spectroscopy (SMFS) has been hindered by challenges in site-specific protein modification while preserving their native state. Here, we introduce a methionine-specific bioconjugation strategy utilizing a bespoke hypervalent iodine reagent for highly selective, rapid, and robust methionine labeling. Since methionine is often the first amino acid incorporated into proteins via initiator tRNA, this approach enables precise N-terminal labeling and attachment, facilitating more reliable SMFS studies. The resulting covalent linkage remains intact during mechanical unfolding or conformational changes of proteins, with a mechanical stability exceeding 600 pN, allowing accurate measurements before detachment from AFM cantilever tips or cell surfaces. Additionally, this method improves sampling rates and data quality. We successfully applied this technique to light-induced protein printing and natural surface protein studies, demonstrating its potential for advancing protein mechanics research in living cells. This strategy provides significant advantages for SMFS in the study of complex cellular systems.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 14\",\"pages\":\"14177–14186 14177–14186\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c00224\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c00224","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Methionine-Specific Bioconjugation for Single-Molecule Force Spectroscopy of Cell Surface Proteins
Cell surface proteins play crucial roles in various cellular processes, including intercellular communication, adhesion, and immune responses. However, investigating these proteins using single-molecule force spectroscopy (SMFS) has been hindered by challenges in site-specific protein modification while preserving their native state. Here, we introduce a methionine-specific bioconjugation strategy utilizing a bespoke hypervalent iodine reagent for highly selective, rapid, and robust methionine labeling. Since methionine is often the first amino acid incorporated into proteins via initiator tRNA, this approach enables precise N-terminal labeling and attachment, facilitating more reliable SMFS studies. The resulting covalent linkage remains intact during mechanical unfolding or conformational changes of proteins, with a mechanical stability exceeding 600 pN, allowing accurate measurements before detachment from AFM cantilever tips or cell surfaces. Additionally, this method improves sampling rates and data quality. We successfully applied this technique to light-induced protein printing and natural surface protein studies, demonstrating its potential for advancing protein mechanics research in living cells. This strategy provides significant advantages for SMFS in the study of complex cellular systems.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.