低成本大面积100 GHz智能反射面:电柱控制网印高相变比二氧化钒

IF 6.6 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eiyong Park, Junghyeon Kim, Minjae Lee, Ratanak Phon, Mihyun Kim, Sunghoon Hong, Sungjoon Lim
{"title":"低成本大面积100 GHz智能反射面:电柱控制网印高相变比二氧化钒","authors":"Eiyong Park, Junghyeon Kim, Minjae Lee, Ratanak Phon, Mihyun Kim, Sunghoon Hong, Sungjoon Lim","doi":"10.1515/nanoph-2025-0006","DOIUrl":null,"url":null,"abstract":"In this paper, we propose for the first time 100 GHz intelligent reflective surface (IRS) using screen-printable, high phase changing ratio vanadium dioxide (VO<jats:sub>2</jats:sub>). Sub-THz communications offer advantages such as ultra-high speed and ultra-low latency, it increases communication challenges due to path losses and non-line-of-sight (NLOS) problems. IRS is a representative solution to this NLOS problem. Conventional IRSs using PIN and varactor diodes have difficulty covering the sub-THz band due to the operating frequency limitations of these tuning elements. In this study, we successfully applied screen-printed VO<jats:sub>2</jats:sub> switches to sub-THz IRS to control the reflection angle. The screen-printed VO<jats:sub>2</jats:sub> achieved the highest reported available phase-changing-ratio (PCR) of 1,000, increasing design freedom. The measurement results are consistent with the numerically calculated values and EM simulation results. We believe that this solution will open new avenues and potential for practical applications in low-cost, large-area tunable RF electronics in the sub-THz band.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"207 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cost large-area 100 GHz intelligent reflective surface: electrically column control of screen-printable high phase changing ratio vanadium dioxides\",\"authors\":\"Eiyong Park, Junghyeon Kim, Minjae Lee, Ratanak Phon, Mihyun Kim, Sunghoon Hong, Sungjoon Lim\",\"doi\":\"10.1515/nanoph-2025-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose for the first time 100 GHz intelligent reflective surface (IRS) using screen-printable, high phase changing ratio vanadium dioxide (VO<jats:sub>2</jats:sub>). Sub-THz communications offer advantages such as ultra-high speed and ultra-low latency, it increases communication challenges due to path losses and non-line-of-sight (NLOS) problems. IRS is a representative solution to this NLOS problem. Conventional IRSs using PIN and varactor diodes have difficulty covering the sub-THz band due to the operating frequency limitations of these tuning elements. In this study, we successfully applied screen-printed VO<jats:sub>2</jats:sub> switches to sub-THz IRS to control the reflection angle. The screen-printed VO<jats:sub>2</jats:sub> achieved the highest reported available phase-changing-ratio (PCR) of 1,000, increasing design freedom. The measurement results are consistent with the numerically calculated values and EM simulation results. We believe that this solution will open new avenues and potential for practical applications in low-cost, large-area tunable RF electronics in the sub-THz band.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"207 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0006\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0006","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文首次提出了采用可丝网印刷、高相变比二氧化钒(VO2)的100 GHz智能反射表面(IRS)。亚太赫兹通信提供了超高速和超低延迟等优势,但由于路径损耗和非视距(NLOS)问题,它增加了通信挑战。IRS是解决NLOS问题的代表性解决方案。由于这些调谐元件的工作频率限制,使用PIN和变容二极管的传统irs难以覆盖次太赫兹频段。在这项研究中,我们成功地将丝网印刷的VO2开关应用于亚太赫兹红外,以控制反射角。丝网印刷的VO2达到了最高的可用相变比(PCR) 1000,增加了设计的自由度。测量结果与数值计算值和电磁仿真结果吻合较好。我们相信该解决方案将为亚太赫兹频段低成本、大面积可调谐射频电子的实际应用开辟新的途径和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-cost large-area 100 GHz intelligent reflective surface: electrically column control of screen-printable high phase changing ratio vanadium dioxides
In this paper, we propose for the first time 100 GHz intelligent reflective surface (IRS) using screen-printable, high phase changing ratio vanadium dioxide (VO2). Sub-THz communications offer advantages such as ultra-high speed and ultra-low latency, it increases communication challenges due to path losses and non-line-of-sight (NLOS) problems. IRS is a representative solution to this NLOS problem. Conventional IRSs using PIN and varactor diodes have difficulty covering the sub-THz band due to the operating frequency limitations of these tuning elements. In this study, we successfully applied screen-printed VO2 switches to sub-THz IRS to control the reflection angle. The screen-printed VO2 achieved the highest reported available phase-changing-ratio (PCR) of 1,000, increasing design freedom. The measurement results are consistent with the numerically calculated values and EM simulation results. We believe that this solution will open new avenues and potential for practical applications in low-cost, large-area tunable RF electronics in the sub-THz band.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信