Santosh S. Mali, Michael Scobie, Justine Baillie, Corey Plant, Sayma Shammi, Anup Das
{"title":"基于无人机的多光谱和热红外图像与机器学习相结合预测冬小麦水分胁迫","authors":"Santosh S. Mali, Michael Scobie, Justine Baillie, Corey Plant, Sayma Shammi, Anup Das","doi":"10.1007/s11119-025-10239-z","DOIUrl":null,"url":null,"abstract":"<p>Assessing spatial and temporal variations in crop water stress is vital for precision irrigation. This study utilized Unmanned Aerial Vehicles (UAVs) equipped with multispectral (MSS) and thermal band (TB) sensors to map the crop water stress index (CWSI) in wheat. A water deficit experiment was conducted on winter wheat under varying irrigation levels during late vegetative, reproductive, and maturation stages. CWSI was calculated using canopy temperature, ambient air temperature, and vapor pressure deficit (VPD). Six machine learning (ML) models—linear model (LM), random forest (RF), decision tree (DT), support vector machine (SVM), extreme gradient boosting (XGB), and artificial neural network (ANN)—were developed for pre-heading, post-heading, and seasonal datasets. The top five vegetation indices (VIs), selected using Recursive Feature Elimination (RFE), along with thermal data, were used as inputs to the ML models. Results showed that seasonal ML models outperformed those based only on pre-heading or post-heading data. Particularly, the RF model performed well, with respective R² and RMSE values of 0.87 and 0.09 for seasonal, 0.82 and 0.05 for pre-heading, and 0.93 and 0.06 for post-heading datasets. SHapley Additive exPlanations (SHAP) analysis identified Red Normalized Value (RNV), TB, and Green Red Vegetation Index (GRVI) as key predictors of CWSI in the RF model. CWSI maps effectively captured spatial variations in water stress, aligning with irrigation management practices. This study demonstrates the effectiveness of combining UAV remote sensing and ML for precision irrigation management.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"26 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating UAV-based multispectral and thermal infrared imageries with machine learning for predicting water stress in winter wheat\",\"authors\":\"Santosh S. Mali, Michael Scobie, Justine Baillie, Corey Plant, Sayma Shammi, Anup Das\",\"doi\":\"10.1007/s11119-025-10239-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assessing spatial and temporal variations in crop water stress is vital for precision irrigation. This study utilized Unmanned Aerial Vehicles (UAVs) equipped with multispectral (MSS) and thermal band (TB) sensors to map the crop water stress index (CWSI) in wheat. A water deficit experiment was conducted on winter wheat under varying irrigation levels during late vegetative, reproductive, and maturation stages. CWSI was calculated using canopy temperature, ambient air temperature, and vapor pressure deficit (VPD). Six machine learning (ML) models—linear model (LM), random forest (RF), decision tree (DT), support vector machine (SVM), extreme gradient boosting (XGB), and artificial neural network (ANN)—were developed for pre-heading, post-heading, and seasonal datasets. The top five vegetation indices (VIs), selected using Recursive Feature Elimination (RFE), along with thermal data, were used as inputs to the ML models. Results showed that seasonal ML models outperformed those based only on pre-heading or post-heading data. Particularly, the RF model performed well, with respective R² and RMSE values of 0.87 and 0.09 for seasonal, 0.82 and 0.05 for pre-heading, and 0.93 and 0.06 for post-heading datasets. SHapley Additive exPlanations (SHAP) analysis identified Red Normalized Value (RNV), TB, and Green Red Vegetation Index (GRVI) as key predictors of CWSI in the RF model. CWSI maps effectively captured spatial variations in water stress, aligning with irrigation management practices. This study demonstrates the effectiveness of combining UAV remote sensing and ML for precision irrigation management.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-025-10239-z\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10239-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrating UAV-based multispectral and thermal infrared imageries with machine learning for predicting water stress in winter wheat
Assessing spatial and temporal variations in crop water stress is vital for precision irrigation. This study utilized Unmanned Aerial Vehicles (UAVs) equipped with multispectral (MSS) and thermal band (TB) sensors to map the crop water stress index (CWSI) in wheat. A water deficit experiment was conducted on winter wheat under varying irrigation levels during late vegetative, reproductive, and maturation stages. CWSI was calculated using canopy temperature, ambient air temperature, and vapor pressure deficit (VPD). Six machine learning (ML) models—linear model (LM), random forest (RF), decision tree (DT), support vector machine (SVM), extreme gradient boosting (XGB), and artificial neural network (ANN)—were developed for pre-heading, post-heading, and seasonal datasets. The top five vegetation indices (VIs), selected using Recursive Feature Elimination (RFE), along with thermal data, were used as inputs to the ML models. Results showed that seasonal ML models outperformed those based only on pre-heading or post-heading data. Particularly, the RF model performed well, with respective R² and RMSE values of 0.87 and 0.09 for seasonal, 0.82 and 0.05 for pre-heading, and 0.93 and 0.06 for post-heading datasets. SHapley Additive exPlanations (SHAP) analysis identified Red Normalized Value (RNV), TB, and Green Red Vegetation Index (GRVI) as key predictors of CWSI in the RF model. CWSI maps effectively captured spatial variations in water stress, aligning with irrigation management practices. This study demonstrates the effectiveness of combining UAV remote sensing and ML for precision irrigation management.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.