Chao Liu , Yi Cao , Qi Xia , Amil Aligayev , Qing Huang
{"title":"介质阻挡放电等离子体制备CoNi-MOF类漆酶纳米酶处理抗生素污染","authors":"Chao Liu , Yi Cao , Qi Xia , Amil Aligayev , Qing Huang","doi":"10.1016/j.jhazmat.2025.138282","DOIUrl":null,"url":null,"abstract":"<div><div>Laccase is a natural green catalyst and utilized in pollution treatment. Nevertheless, its practical application is constrained by limitations including high cost, poor stability, and difficulties in recovery. Herein, with inspiration from catalytic mechanism of natural laccase, we designed and prepared a bimetallic metal-organic framework, namely, CoNi-MOF, using low-temperature plasma (LTP) technology. We employed dielectric barrier discharge (DBD) plasma to prepare CoNi-MOF, and by precisely modulating the N<sub>2</sub>/O<sub>2</sub> gas ratio, we could modulate the distribution concentration of oxygen vacancies in CoNi-MOF. Experimental investigations and density functional theory (DFT) calculations elucidated that the critical role of the oxygen vacancies in enhancing the laccase-like activity, which promoted the activation of molecular oxygen (O<sub>2</sub>) for generation of reactive oxygen species (ROS). Compared to natural laccase, CoNi-MOF exhibited superior catalytic performance in the degradation of antibiotic tetracycline (TC), along with enhanced resistance to harsh environmental conditions, improved stability, and low biotoxicity. Notably, aeration increased the dissolved oxygen (DO) content, further improving the TC degradation efficiency. As such, this study not only proposes a facile and efficient low-temperature plasma technology for synthesizing high-performance laccase-like nanozymes but also provides a promising and environmentally friendly strategy for the remediation of antibiotic contamination in the environment.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"493 ","pages":"Article 138282"},"PeriodicalIF":12.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoNi-MOF laccase-like nanozymes prepared by dielectric barrier discharge plasma for treatment of antibiotic pollution\",\"authors\":\"Chao Liu , Yi Cao , Qi Xia , Amil Aligayev , Qing Huang\",\"doi\":\"10.1016/j.jhazmat.2025.138282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laccase is a natural green catalyst and utilized in pollution treatment. Nevertheless, its practical application is constrained by limitations including high cost, poor stability, and difficulties in recovery. Herein, with inspiration from catalytic mechanism of natural laccase, we designed and prepared a bimetallic metal-organic framework, namely, CoNi-MOF, using low-temperature plasma (LTP) technology. We employed dielectric barrier discharge (DBD) plasma to prepare CoNi-MOF, and by precisely modulating the N<sub>2</sub>/O<sub>2</sub> gas ratio, we could modulate the distribution concentration of oxygen vacancies in CoNi-MOF. Experimental investigations and density functional theory (DFT) calculations elucidated that the critical role of the oxygen vacancies in enhancing the laccase-like activity, which promoted the activation of molecular oxygen (O<sub>2</sub>) for generation of reactive oxygen species (ROS). Compared to natural laccase, CoNi-MOF exhibited superior catalytic performance in the degradation of antibiotic tetracycline (TC), along with enhanced resistance to harsh environmental conditions, improved stability, and low biotoxicity. Notably, aeration increased the dissolved oxygen (DO) content, further improving the TC degradation efficiency. As such, this study not only proposes a facile and efficient low-temperature plasma technology for synthesizing high-performance laccase-like nanozymes but also provides a promising and environmentally friendly strategy for the remediation of antibiotic contamination in the environment.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"493 \",\"pages\":\"Article 138282\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389425011975\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425011975","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
CoNi-MOF laccase-like nanozymes prepared by dielectric barrier discharge plasma for treatment of antibiotic pollution
Laccase is a natural green catalyst and utilized in pollution treatment. Nevertheless, its practical application is constrained by limitations including high cost, poor stability, and difficulties in recovery. Herein, with inspiration from catalytic mechanism of natural laccase, we designed and prepared a bimetallic metal-organic framework, namely, CoNi-MOF, using low-temperature plasma (LTP) technology. We employed dielectric barrier discharge (DBD) plasma to prepare CoNi-MOF, and by precisely modulating the N2/O2 gas ratio, we could modulate the distribution concentration of oxygen vacancies in CoNi-MOF. Experimental investigations and density functional theory (DFT) calculations elucidated that the critical role of the oxygen vacancies in enhancing the laccase-like activity, which promoted the activation of molecular oxygen (O2) for generation of reactive oxygen species (ROS). Compared to natural laccase, CoNi-MOF exhibited superior catalytic performance in the degradation of antibiotic tetracycline (TC), along with enhanced resistance to harsh environmental conditions, improved stability, and low biotoxicity. Notably, aeration increased the dissolved oxygen (DO) content, further improving the TC degradation efficiency. As such, this study not only proposes a facile and efficient low-temperature plasma technology for synthesizing high-performance laccase-like nanozymes but also provides a promising and environmentally friendly strategy for the remediation of antibiotic contamination in the environment.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.