高熵多主元纳米粒子的合成与机器学习预测

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-14 DOI:10.1002/smll.202501444
Wail Al Zoubi, Yujun Sheng, Iftikhar Hussain, Heo Seongjun, Mohammad R. Thalji, Nokeun Park
{"title":"高熵多主元纳米粒子的合成与机器学习预测","authors":"Wail Al Zoubi,&nbsp;Yujun Sheng,&nbsp;Iftikhar Hussain,&nbsp;Heo Seongjun,&nbsp;Mohammad R. Thalji,&nbsp;Nokeun Park","doi":"10.1002/smll.202501444","DOIUrl":null,"url":null,"abstract":"<p>The vast compositional space of multi-principal element nanoparticles (MPENs), along with their unique properties and diverse applications, has garnered significant attention from the research community. MPENs exhibit unique properties, high configurational entropy, multi-element synergy, and long-range atomic ordering, featuring distinct sublattices of semi-metallic or metallic components. This review reports the recent approaches described in the literature, highlighting their commonalities and differences, and classifies them into general strategies. This report discusses in detail the synthesis approaches of single-phase MPENs. To integrate experimental validation with computational preselection, machine learning (ML) offers the opportunity to establish relationships between lattice structures, properties, and phase formations and how collect and analysis of experimental data. Additionally, challenges such as ML-guided uncertainty quantification and materials design are explored.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 22","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Machine Learning Prediction of High Entropy Multi-Principal Element Nanoparticles\",\"authors\":\"Wail Al Zoubi,&nbsp;Yujun Sheng,&nbsp;Iftikhar Hussain,&nbsp;Heo Seongjun,&nbsp;Mohammad R. Thalji,&nbsp;Nokeun Park\",\"doi\":\"10.1002/smll.202501444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The vast compositional space of multi-principal element nanoparticles (MPENs), along with their unique properties and diverse applications, has garnered significant attention from the research community. MPENs exhibit unique properties, high configurational entropy, multi-element synergy, and long-range atomic ordering, featuring distinct sublattices of semi-metallic or metallic components. This review reports the recent approaches described in the literature, highlighting their commonalities and differences, and classifies them into general strategies. This report discusses in detail the synthesis approaches of single-phase MPENs. To integrate experimental validation with computational preselection, machine learning (ML) offers the opportunity to establish relationships between lattice structures, properties, and phase formations and how collect and analysis of experimental data. Additionally, challenges such as ML-guided uncertainty quantification and materials design are explored.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 22\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501444\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501444","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多主元素纳米粒子(MPENs)的组成空间巨大,其独特的性质和多样化的应用引起了研究界的极大关注。MPENs 表现出独特的性质、高构型熵、多元素协同作用和长程原子有序性,具有半金属或金属成分的独特亚晶格。本综述报告了文献中描述的最新方法,强调了这些方法的共性和差异,并将它们归类为一般策略。本报告详细讨论了单相 MPEN 的合成方法。为了将实验验证与计算预选结合起来,机器学习(ML)提供了在晶格结构、特性和相形成之间建立关系以及如何收集和分析实验数据的机会。此外,还探讨了 ML 引导的不确定性量化和材料设计等挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis and Machine Learning Prediction of High Entropy Multi-Principal Element Nanoparticles

Synthesis and Machine Learning Prediction of High Entropy Multi-Principal Element Nanoparticles

Synthesis and Machine Learning Prediction of High Entropy Multi-Principal Element Nanoparticles

The vast compositional space of multi-principal element nanoparticles (MPENs), along with their unique properties and diverse applications, has garnered significant attention from the research community. MPENs exhibit unique properties, high configurational entropy, multi-element synergy, and long-range atomic ordering, featuring distinct sublattices of semi-metallic or metallic components. This review reports the recent approaches described in the literature, highlighting their commonalities and differences, and classifies them into general strategies. This report discusses in detail the synthesis approaches of single-phase MPENs. To integrate experimental validation with computational preselection, machine learning (ML) offers the opportunity to establish relationships between lattice structures, properties, and phase formations and how collect and analysis of experimental data. Additionally, challenges such as ML-guided uncertainty quantification and materials design are explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信