实现高性能全固态锂金属电池的表面改性锂

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hui-Tae Sim, Myung-Keun Oh, Hyo-Jin Kim, Ye-Eun Park, Yun-Sun Cho, Jaeyoung Choi, Seong-Jin Park, Dong-Won Kim
{"title":"实现高性能全固态锂金属电池的表面改性锂","authors":"Hui-Tae Sim, Myung-Keun Oh, Hyo-Jin Kim, Ye-Eun Park, Yun-Sun Cho, Jaeyoung Choi, Seong-Jin Park, Dong-Won Kim","doi":"10.1021/acsenergylett.5c00656","DOIUrl":null,"url":null,"abstract":"Sulfide-based all-solid-state lithium metal batteries (ASSLMBs) are promising next-generation batteries due to their high energy density and safety. However, lithium anodes face challenges like dendrite growth and side reactions at the lithium metal-sulfide electrolyte interface. In this study, we eliminated the resistive native layer on lithium metal and formed a protective layer with high ionic conductivity, mechanical strength, and cohesion by reacting lithium metal with a solution containing nitromethane, dimethoxyethene, and lithium nitrate. The lithium symmetric cell with the surface-modified Li exhibited a high critical current density of 2.8 mA cm<sup>–2</sup> and stable cycling over 1000 h at 30 °C. The ASSLMB with surface-modified Li anode, Li<sub>6</sub>PS<sub>5</sub>Cl electrolyte, and LiNi<sub>0.78</sub>Co<sub>0.10</sub>Mn<sub>0.12</sub>O<sub>2</sub> cathode achieved a high discharge capacity (183.2 mAh g<sup>–1</sup>) and stable cycling for 300 cycles without short-circuit at 0.3 C and 30 °C, which enabled solving the critical challenging issues of Li metal for the development of ASSLMBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"118 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-Modified Lithium Enabling High-Performance All-Solid-State Lithium Metal Batteries\",\"authors\":\"Hui-Tae Sim, Myung-Keun Oh, Hyo-Jin Kim, Ye-Eun Park, Yun-Sun Cho, Jaeyoung Choi, Seong-Jin Park, Dong-Won Kim\",\"doi\":\"10.1021/acsenergylett.5c00656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sulfide-based all-solid-state lithium metal batteries (ASSLMBs) are promising next-generation batteries due to their high energy density and safety. However, lithium anodes face challenges like dendrite growth and side reactions at the lithium metal-sulfide electrolyte interface. In this study, we eliminated the resistive native layer on lithium metal and formed a protective layer with high ionic conductivity, mechanical strength, and cohesion by reacting lithium metal with a solution containing nitromethane, dimethoxyethene, and lithium nitrate. The lithium symmetric cell with the surface-modified Li exhibited a high critical current density of 2.8 mA cm<sup>–2</sup> and stable cycling over 1000 h at 30 °C. The ASSLMB with surface-modified Li anode, Li<sub>6</sub>PS<sub>5</sub>Cl electrolyte, and LiNi<sub>0.78</sub>Co<sub>0.10</sub>Mn<sub>0.12</sub>O<sub>2</sub> cathode achieved a high discharge capacity (183.2 mAh g<sup>–1</sup>) and stable cycling for 300 cycles without short-circuit at 0.3 C and 30 °C, which enabled solving the critical challenging issues of Li metal for the development of ASSLMBs.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c00656\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00656","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫化物基全固态锂金属电池(asslmb)因其高能量密度和安全性而成为下一代电池。然而,锂阳极面临着枝晶生长和锂金属-硫化物电解质界面副反应等挑战。在本研究中,我们通过将金属锂与含有硝基甲烷、二甲氧基乙烯和硝酸锂的溶液反应,消除金属锂表面的电阻性天然层,形成具有高离子导电性、机械强度和内聚性的保护层。具有表面修饰的锂对称电池具有2.8 mA cm-2的高临界电流密度,并且在30℃下稳定循环1000 h以上。采用表面改性锂阳极、Li6PS5Cl电解液和lini0.78 co0.10 mn0.120 o2阴极的ASSLMB在0.3℃和30℃条件下具有183.2 mAh g-1的高放电容量和300次不短路的稳定循环,解决了ASSLMB开发中锂金属的关键挑战问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface-Modified Lithium Enabling High-Performance All-Solid-State Lithium Metal Batteries

Surface-Modified Lithium Enabling High-Performance All-Solid-State Lithium Metal Batteries
Sulfide-based all-solid-state lithium metal batteries (ASSLMBs) are promising next-generation batteries due to their high energy density and safety. However, lithium anodes face challenges like dendrite growth and side reactions at the lithium metal-sulfide electrolyte interface. In this study, we eliminated the resistive native layer on lithium metal and formed a protective layer with high ionic conductivity, mechanical strength, and cohesion by reacting lithium metal with a solution containing nitromethane, dimethoxyethene, and lithium nitrate. The lithium symmetric cell with the surface-modified Li exhibited a high critical current density of 2.8 mA cm–2 and stable cycling over 1000 h at 30 °C. The ASSLMB with surface-modified Li anode, Li6PS5Cl electrolyte, and LiNi0.78Co0.10Mn0.12O2 cathode achieved a high discharge capacity (183.2 mAh g–1) and stable cycling for 300 cycles without short-circuit at 0.3 C and 30 °C, which enabled solving the critical challenging issues of Li metal for the development of ASSLMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信