推进聚酰亚胺电极从半电池袋电池:平衡$/千瓦时,稳定性和可扩展性的实用锂离子有机电池

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Nagaraj Patil , Jesus I. Medina-Santos , Enrique García-Quismondo , Nicolas Goujon , David Mecerreyes , Jesus Palma , Rebeca Marcilla
{"title":"推进聚酰亚胺电极从半电池袋电池:平衡$/千瓦时,稳定性和可扩展性的实用锂离子有机电池","authors":"Nagaraj Patil ,&nbsp;Jesus I. Medina-Santos ,&nbsp;Enrique García-Quismondo ,&nbsp;Nicolas Goujon ,&nbsp;David Mecerreyes ,&nbsp;Jesus Palma ,&nbsp;Rebeca Marcilla","doi":"10.1016/j.ensm.2025.104254","DOIUrl":null,"url":null,"abstract":"<div><div>Organic batteries hold great promise for sustainable energy storage, yet research has largely focused on material-level development, with practical optimization remaining underexplored. This work systematically addresses this gap by optimizing polyimide (PI) composition, mass loading, and electrode design, starting with Li-ion half-cells. Even at high mass loadings (up to 55 mg cm⁻²), PI electrodes exhibited exceptional gravimetric, areal, and volumetric capacities (155 mAh g⁻¹, 8.5 mAh cm⁻², 129 mAh cm⁻³) and outstanding specific energies (416 Wh kg⁻¹, 22.9 mWh cm⁻², 371 Wh L⁻¹), among the highest reported for organic Li-ion electrodes. Moving to practical systems, semi-organic Li-ion full cells, such as Li_graphite//PI, Li_LTO//PI, PI//LFP, and PI//NMC, assembled in both coin- and pouch-type configurations demonstrate PI electrode's viability, with Li_graphite//PI pouch cells achieving 210 Wh kg⁻¹ and 32 mWh cm⁻² at 2.2 V, alongside robust cycling stability. Finally, increasing PI content to 90 wt.% at 50 mg cm⁻² further enhances gravimetric energy density (185 Wh kg<sub>electrodes</sub>⁻¹), reduces cost ($70 per kWh), and improves sustainability without compromising performance. These findings highlight PI's potential for next-generation organic batteries and provide a rigorous performance benchmark, setting new standards for evaluating and commercializing organic electrode materials.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"78 ","pages":"Article 104254"},"PeriodicalIF":18.9000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Polyimide Electrodes From Half-Cells to Pouch Cells: Balancing $/kWh, Stability, and Scalability for Practical Li-ion Organic Batteries\",\"authors\":\"Nagaraj Patil ,&nbsp;Jesus I. Medina-Santos ,&nbsp;Enrique García-Quismondo ,&nbsp;Nicolas Goujon ,&nbsp;David Mecerreyes ,&nbsp;Jesus Palma ,&nbsp;Rebeca Marcilla\",\"doi\":\"10.1016/j.ensm.2025.104254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Organic batteries hold great promise for sustainable energy storage, yet research has largely focused on material-level development, with practical optimization remaining underexplored. This work systematically addresses this gap by optimizing polyimide (PI) composition, mass loading, and electrode design, starting with Li-ion half-cells. Even at high mass loadings (up to 55 mg cm⁻²), PI electrodes exhibited exceptional gravimetric, areal, and volumetric capacities (155 mAh g⁻¹, 8.5 mAh cm⁻², 129 mAh cm⁻³) and outstanding specific energies (416 Wh kg⁻¹, 22.9 mWh cm⁻², 371 Wh L⁻¹), among the highest reported for organic Li-ion electrodes. Moving to practical systems, semi-organic Li-ion full cells, such as Li_graphite//PI, Li_LTO//PI, PI//LFP, and PI//NMC, assembled in both coin- and pouch-type configurations demonstrate PI electrode's viability, with Li_graphite//PI pouch cells achieving 210 Wh kg⁻¹ and 32 mWh cm⁻² at 2.2 V, alongside robust cycling stability. Finally, increasing PI content to 90 wt.% at 50 mg cm⁻² further enhances gravimetric energy density (185 Wh kg<sub>electrodes</sub>⁻¹), reduces cost ($70 per kWh), and improves sustainability without compromising performance. These findings highlight PI's potential for next-generation organic batteries and provide a rigorous performance benchmark, setting new standards for evaluating and commercializing organic electrode materials.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"78 \",\"pages\":\"Article 104254\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725002521\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002521","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机电池在可持续能源存储方面具有很大的前景,但研究主要集中在材料层面的发展,实际的优化仍未得到充分探索。这项工作通过优化聚酰亚胺(PI)成分、质量负载和电极设计,从锂离子半电池开始,系统地解决了这一差距。即使在高质量载荷下(高达55 mg cm - 2), PI电极也表现出特殊的重量、面积和体积容量(155 mAh g -⁻,8.5 mAh cm -⁻,129 mAh cm -⁻)和突出的比能(416 Wh kg -⁻,22.9 mWh cm -⁻,371 Wh L -⁻),是有机锂离子电极中最高的。在实际系统中,半有机锂离子电池,如li_石墨//PI, Li_LTO//PI, PI//LFP和PI//NMC,以硬币和袋型配置组装,证明了PI电极的可行性,li_石墨//PI袋电池在2.2 V时达到210 Wh kg -⁻¹和32 mWh cm -⁻²,并具有强大的循环稳定性。最后,将PI的含量增加到90 wt.%,在50 mg cm(⁻²)的情况下,进一步提高重力能密度(185 Wh kelectrodes(⁻¹)),降低成本(每千瓦时70美元),并在不影响性能的情况下提高可持续性。这些发现突出了PI在下一代有机电池方面的潜力,并提供了严格的性能基准,为评估和商业化有机电极材料设定了新的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing Polyimide Electrodes From Half-Cells to Pouch Cells: Balancing $/kWh, Stability, and Scalability for Practical Li-ion Organic Batteries

Advancing Polyimide Electrodes From Half-Cells to Pouch Cells: Balancing $/kWh, Stability, and Scalability for Practical Li-ion Organic Batteries

Advancing Polyimide Electrodes From Half-Cells to Pouch Cells: Balancing $/kWh, Stability, and Scalability for Practical Li-ion Organic Batteries
Organic batteries hold great promise for sustainable energy storage, yet research has largely focused on material-level development, with practical optimization remaining underexplored. This work systematically addresses this gap by optimizing polyimide (PI) composition, mass loading, and electrode design, starting with Li-ion half-cells. Even at high mass loadings (up to 55 mg cm⁻²), PI electrodes exhibited exceptional gravimetric, areal, and volumetric capacities (155 mAh g⁻¹, 8.5 mAh cm⁻², 129 mAh cm⁻³) and outstanding specific energies (416 Wh kg⁻¹, 22.9 mWh cm⁻², 371 Wh L⁻¹), among the highest reported for organic Li-ion electrodes. Moving to practical systems, semi-organic Li-ion full cells, such as Li_graphite//PI, Li_LTO//PI, PI//LFP, and PI//NMC, assembled in both coin- and pouch-type configurations demonstrate PI electrode's viability, with Li_graphite//PI pouch cells achieving 210 Wh kg⁻¹ and 32 mWh cm⁻² at 2.2 V, alongside robust cycling stability. Finally, increasing PI content to 90 wt.% at 50 mg cm⁻² further enhances gravimetric energy density (185 Wh kgelectrodes⁻¹), reduces cost ($70 per kWh), and improves sustainability without compromising performance. These findings highlight PI's potential for next-generation organic batteries and provide a rigorous performance benchmark, setting new standards for evaluating and commercializing organic electrode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信