{"title":"有限尺寸对强相互作用QCD物质输运系数的影响","authors":"Dhananjay Singh, Arvind Kumar","doi":"10.1103/physrevd.111.074017","DOIUrl":null,"url":null,"abstract":"The role of finite volume effects on the various transport coefficients of strongly interacting quark matter is analyzed in the Polyakov chiral SU(3) quark mean-field model at finite temperatures and chemical potentials incorporating the fermionic vacuum term. Using a nonzero lower momentum cutoff and two different forms of the Polyakov loop potentials with quark backreaction, we study the following viscous properties: specific shear viscosity (η</a:mi>/</a:mo>s</a:mi></a:mrow></a:math>), normalized bulk viscosity (<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>ζ</c:mi><c:mi>b</c:mi></c:msub><c:mo>/</c:mo><c:mi>s</c:mi></c:math>), and conductivity properties: electrical conductivity (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>σ</e:mi><e:mrow><e:mi>el</e:mi></e:mrow></e:msub><e:mo>/</e:mo><e:mi>T</e:mi></e:math>) and thermal conductivity (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>κ</g:mi><g:mo>/</g:mo><g:msup><g:mi>T</g:mi><g:mn>2</g:mn></g:msup></g:math>). Along with this, some essential thermodynamic quantities in the context of transport properties, such as the square of the speed of sound (<i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msubsup><i:mi>c</i:mi><i:mi>s</i:mi><i:mn>2</i:mn></i:msubsup></i:math>) and the specific heat (<k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>c</k:mi><k:mi>v</k:mi></k:msub></k:math>) at a constant volume, are computed. Finite size effects are applied to the vacuum term and its influence on the effective quark masses, thermodynamic quantities, and transport coefficients is studied. The temperature dependence of the transport coefficients is obtained through the kinetic theory approach with the relaxation time approximation. The size of the system has been found to have significant effects on all transport coefficients. We find that all the transport coefficients increase as the size of the system is reduced. We have also studied the specific sound channel <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mo stretchy=\"false\">(</m:mo><m:mi>η</m:mi><m:mo>+</m:mo><m:mn>3</m:mn><m:msub><m:mi>ζ</m:mi><m:mi>b</m:mi></m:msub><m:mo>/</m:mo><m:mn>4</m:mn><m:mo stretchy=\"false\">)</m:mo><m:mo>/</m:mo><m:mi>s</m:mi></m:math> and the bulk-to-shear viscosity ratio <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>ζ</q:mi><q:mi>b</q:mi></q:msub><q:mo>/</q:mo><q:mi>η</q:mi></q:math>. The effect of finite size is found to be more prominent in the transition region and vanishes at high <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>T</s:mi></s:math>. The transition temperature <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msub><u:mi>T</u:mi><u:mi>χ</u:mi></u:msub></u:math> is found to decrease as the system size (characterized by <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>R</w:mi></w:math>) decreases. At finite chemical potentials, <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msub><y:mi>T</y:mi><y:mi>χ</y:mi></y:msub></y:math> is shifted to lower values compared to the case of the vanishing chemical potential. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"20 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite size effects on the transport coefficients of strongly interacting QCD matter\",\"authors\":\"Dhananjay Singh, Arvind Kumar\",\"doi\":\"10.1103/physrevd.111.074017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of finite volume effects on the various transport coefficients of strongly interacting quark matter is analyzed in the Polyakov chiral SU(3) quark mean-field model at finite temperatures and chemical potentials incorporating the fermionic vacuum term. Using a nonzero lower momentum cutoff and two different forms of the Polyakov loop potentials with quark backreaction, we study the following viscous properties: specific shear viscosity (η</a:mi>/</a:mo>s</a:mi></a:mrow></a:math>), normalized bulk viscosity (<c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>ζ</c:mi><c:mi>b</c:mi></c:msub><c:mo>/</c:mo><c:mi>s</c:mi></c:math>), and conductivity properties: electrical conductivity (<e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>σ</e:mi><e:mrow><e:mi>el</e:mi></e:mrow></e:msub><e:mo>/</e:mo><e:mi>T</e:mi></e:math>) and thermal conductivity (<g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>κ</g:mi><g:mo>/</g:mo><g:msup><g:mi>T</g:mi><g:mn>2</g:mn></g:msup></g:math>). Along with this, some essential thermodynamic quantities in the context of transport properties, such as the square of the speed of sound (<i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msubsup><i:mi>c</i:mi><i:mi>s</i:mi><i:mn>2</i:mn></i:msubsup></i:math>) and the specific heat (<k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi>c</k:mi><k:mi>v</k:mi></k:msub></k:math>) at a constant volume, are computed. Finite size effects are applied to the vacuum term and its influence on the effective quark masses, thermodynamic quantities, and transport coefficients is studied. The temperature dependence of the transport coefficients is obtained through the kinetic theory approach with the relaxation time approximation. The size of the system has been found to have significant effects on all transport coefficients. We find that all the transport coefficients increase as the size of the system is reduced. We have also studied the specific sound channel <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mo stretchy=\\\"false\\\">(</m:mo><m:mi>η</m:mi><m:mo>+</m:mo><m:mn>3</m:mn><m:msub><m:mi>ζ</m:mi><m:mi>b</m:mi></m:msub><m:mo>/</m:mo><m:mn>4</m:mn><m:mo stretchy=\\\"false\\\">)</m:mo><m:mo>/</m:mo><m:mi>s</m:mi></m:math> and the bulk-to-shear viscosity ratio <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:msub><q:mi>ζ</q:mi><q:mi>b</q:mi></q:msub><q:mo>/</q:mo><q:mi>η</q:mi></q:math>. The effect of finite size is found to be more prominent in the transition region and vanishes at high <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>T</s:mi></s:math>. The transition temperature <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:msub><u:mi>T</u:mi><u:mi>χ</u:mi></u:msub></u:math> is found to decrease as the system size (characterized by <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mi>R</w:mi></w:math>) decreases. At finite chemical potentials, <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:msub><y:mi>T</y:mi><y:mi>χ</y:mi></y:msub></y:math> is shifted to lower values compared to the case of the vanishing chemical potential. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.074017\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.074017","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Finite size effects on the transport coefficients of strongly interacting QCD matter
The role of finite volume effects on the various transport coefficients of strongly interacting quark matter is analyzed in the Polyakov chiral SU(3) quark mean-field model at finite temperatures and chemical potentials incorporating the fermionic vacuum term. Using a nonzero lower momentum cutoff and two different forms of the Polyakov loop potentials with quark backreaction, we study the following viscous properties: specific shear viscosity (η/s), normalized bulk viscosity (ζb/s), and conductivity properties: electrical conductivity (σel/T) and thermal conductivity (κ/T2). Along with this, some essential thermodynamic quantities in the context of transport properties, such as the square of the speed of sound (cs2) and the specific heat (cv) at a constant volume, are computed. Finite size effects are applied to the vacuum term and its influence on the effective quark masses, thermodynamic quantities, and transport coefficients is studied. The temperature dependence of the transport coefficients is obtained through the kinetic theory approach with the relaxation time approximation. The size of the system has been found to have significant effects on all transport coefficients. We find that all the transport coefficients increase as the size of the system is reduced. We have also studied the specific sound channel (η+3ζb/4)/s and the bulk-to-shear viscosity ratio ζb/η. The effect of finite size is found to be more prominent in the transition region and vanishes at high T. The transition temperature Tχ is found to decrease as the system size (characterized by R) decreases. At finite chemical potentials, Tχ is shifted to lower values compared to the case of the vanishing chemical potential. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.