有限尺寸对强相互作用QCD物质输运系数的影响

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Dhananjay Singh, Arvind Kumar
{"title":"有限尺寸对强相互作用QCD物质输运系数的影响","authors":"Dhananjay Singh, Arvind Kumar","doi":"10.1103/physrevd.111.074017","DOIUrl":null,"url":null,"abstract":"The role of finite volume effects on the various transport coefficients of strongly interacting quark matter is analyzed in the Polyakov chiral SU(3) quark mean-field model at finite temperatures and chemical potentials incorporating the fermionic vacuum term. Using a nonzero lower momentum cutoff and two different forms of the Polyakov loop potentials with quark backreaction, we study the following viscous properties: specific shear viscosity (η</a:mi>/</a:mo>s</a:mi></a:mrow></a:math>), normalized bulk viscosity (<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>ζ</c:mi><c:mi>b</c:mi></c:msub><c:mo>/</c:mo><c:mi>s</c:mi></c:math>), and conductivity properties: electrical conductivity (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>σ</e:mi><e:mrow><e:mi>el</e:mi></e:mrow></e:msub><e:mo>/</e:mo><e:mi>T</e:mi></e:math>) and thermal conductivity (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>κ</g:mi><g:mo>/</g:mo><g:msup><g:mi>T</g:mi><g:mn>2</g:mn></g:msup></g:math>). Along with this, some essential thermodynamic quantities in the context of transport properties, such as the square of the speed of sound (<i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msubsup><i:mi>c</i:mi><i:mi>s</i:mi><i:mn>2</i:mn></i:msubsup></i:math>) and the specific heat (<k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>c</k:mi><k:mi>v</k:mi></k:msub></k:math>) at a constant volume, are computed. Finite size effects are applied to the vacuum term and its influence on the effective quark masses, thermodynamic quantities, and transport coefficients is studied. The temperature dependence of the transport coefficients is obtained through the kinetic theory approach with the relaxation time approximation. The size of the system has been found to have significant effects on all transport coefficients. We find that all the transport coefficients increase as the size of the system is reduced. We have also studied the specific sound channel <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mo stretchy=\"false\">(</m:mo><m:mi>η</m:mi><m:mo>+</m:mo><m:mn>3</m:mn><m:msub><m:mi>ζ</m:mi><m:mi>b</m:mi></m:msub><m:mo>/</m:mo><m:mn>4</m:mn><m:mo stretchy=\"false\">)</m:mo><m:mo>/</m:mo><m:mi>s</m:mi></m:math> and the bulk-to-shear viscosity ratio <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>ζ</q:mi><q:mi>b</q:mi></q:msub><q:mo>/</q:mo><q:mi>η</q:mi></q:math>. The effect of finite size is found to be more prominent in the transition region and vanishes at high <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>T</s:mi></s:math>. The transition temperature <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msub><u:mi>T</u:mi><u:mi>χ</u:mi></u:msub></u:math> is found to decrease as the system size (characterized by <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>R</w:mi></w:math>) decreases. At finite chemical potentials, <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msub><y:mi>T</y:mi><y:mi>χ</y:mi></y:msub></y:math> is shifted to lower values compared to the case of the vanishing chemical potential. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"20 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite size effects on the transport coefficients of strongly interacting QCD matter\",\"authors\":\"Dhananjay Singh, Arvind Kumar\",\"doi\":\"10.1103/physrevd.111.074017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of finite volume effects on the various transport coefficients of strongly interacting quark matter is analyzed in the Polyakov chiral SU(3) quark mean-field model at finite temperatures and chemical potentials incorporating the fermionic vacuum term. Using a nonzero lower momentum cutoff and two different forms of the Polyakov loop potentials with quark backreaction, we study the following viscous properties: specific shear viscosity (η</a:mi>/</a:mo>s</a:mi></a:mrow></a:math>), normalized bulk viscosity (<c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>ζ</c:mi><c:mi>b</c:mi></c:msub><c:mo>/</c:mo><c:mi>s</c:mi></c:math>), and conductivity properties: electrical conductivity (<e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>σ</e:mi><e:mrow><e:mi>el</e:mi></e:mrow></e:msub><e:mo>/</e:mo><e:mi>T</e:mi></e:math>) and thermal conductivity (<g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>κ</g:mi><g:mo>/</g:mo><g:msup><g:mi>T</g:mi><g:mn>2</g:mn></g:msup></g:math>). Along with this, some essential thermodynamic quantities in the context of transport properties, such as the square of the speed of sound (<i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msubsup><i:mi>c</i:mi><i:mi>s</i:mi><i:mn>2</i:mn></i:msubsup></i:math>) and the specific heat (<k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi>c</k:mi><k:mi>v</k:mi></k:msub></k:math>) at a constant volume, are computed. Finite size effects are applied to the vacuum term and its influence on the effective quark masses, thermodynamic quantities, and transport coefficients is studied. The temperature dependence of the transport coefficients is obtained through the kinetic theory approach with the relaxation time approximation. The size of the system has been found to have significant effects on all transport coefficients. We find that all the transport coefficients increase as the size of the system is reduced. We have also studied the specific sound channel <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mo stretchy=\\\"false\\\">(</m:mo><m:mi>η</m:mi><m:mo>+</m:mo><m:mn>3</m:mn><m:msub><m:mi>ζ</m:mi><m:mi>b</m:mi></m:msub><m:mo>/</m:mo><m:mn>4</m:mn><m:mo stretchy=\\\"false\\\">)</m:mo><m:mo>/</m:mo><m:mi>s</m:mi></m:math> and the bulk-to-shear viscosity ratio <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:msub><q:mi>ζ</q:mi><q:mi>b</q:mi></q:msub><q:mo>/</q:mo><q:mi>η</q:mi></q:math>. The effect of finite size is found to be more prominent in the transition region and vanishes at high <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>T</s:mi></s:math>. The transition temperature <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:msub><u:mi>T</u:mi><u:mi>χ</u:mi></u:msub></u:math> is found to decrease as the system size (characterized by <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mi>R</w:mi></w:math>) decreases. At finite chemical potentials, <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:msub><y:mi>T</y:mi><y:mi>χ</y:mi></y:msub></y:math> is shifted to lower values compared to the case of the vanishing chemical potential. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.074017\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.074017","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在有限温度和包含费米子真空项的化学势下的波利亚科夫手性 SU(3) 夸克均场模型中,分析了有限体积效应对强相互作用夸克物质的各种输运系数的作用。利用非零下动量截止和两种不同形式的具有夸克反作用的波利亚科夫环势,我们研究了以下粘性特性:比剪切粘度(η/s)、归一化体积粘度(ζb/s)和传导特性:电导率(σel/T)和热导率(κ/T2)。此外,还计算了传输特性方面的一些基本热力学量,如恒定体积下的声速平方(cs2)和比热(cv)。对真空项应用了有限尺寸效应,并研究了它对有效夸克质量、热力学量和输运系数的影响。通过动力学理论方法和弛豫时间近似,获得了输运系数的温度依赖性。研究发现,系统的大小对所有输运系数都有显著影响。我们发现,随着系统尺寸的减小,所有传输系数都会增加。我们还研究了特定声道 (η+3ζb/4)/s 和体积-剪切粘度比 ζb/η。有限尺寸的影响在过渡区域更为突出,在高 T 时消失。与化学势消失的情况相比,在有限化学势下,Tχ 会向更低的值移动。 美国物理学会出版 2025
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite size effects on the transport coefficients of strongly interacting QCD matter
The role of finite volume effects on the various transport coefficients of strongly interacting quark matter is analyzed in the Polyakov chiral SU(3) quark mean-field model at finite temperatures and chemical potentials incorporating the fermionic vacuum term. Using a nonzero lower momentum cutoff and two different forms of the Polyakov loop potentials with quark backreaction, we study the following viscous properties: specific shear viscosity (η/s), normalized bulk viscosity (ζb/s), and conductivity properties: electrical conductivity (σel/T) and thermal conductivity (κ/T2). Along with this, some essential thermodynamic quantities in the context of transport properties, such as the square of the speed of sound (cs2) and the specific heat (cv) at a constant volume, are computed. Finite size effects are applied to the vacuum term and its influence on the effective quark masses, thermodynamic quantities, and transport coefficients is studied. The temperature dependence of the transport coefficients is obtained through the kinetic theory approach with the relaxation time approximation. The size of the system has been found to have significant effects on all transport coefficients. We find that all the transport coefficients increase as the size of the system is reduced. We have also studied the specific sound channel (η+3ζb/4)/s and the bulk-to-shear viscosity ratio ζb/η. The effect of finite size is found to be more prominent in the transition region and vanishes at high T. The transition temperature Tχ is found to decrease as the system size (characterized by R) decreases. At finite chemical potentials, Tχ is shifted to lower values compared to the case of the vanishing chemical potential. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信