Co3O4(111)负载的多功能Pd-Rh电催化剂在碱性环境下的稳定性:电子金属-负载相互作用的影响

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-04-14 DOI:10.1039/d5nr00413f
Alexander Simanenko, Jan Škvára, Pankaj kumar Samal, Evanie Franz, Robert Hübsch, Tomas Skala, Nataliya Tsud, Sascha Mehl, Daniel Schauermann, Viktor Johánek, Josef Mysliveček, Olaf Brummel, Yaroslava Lykhach, Joerg Libuda
{"title":"Co3O4(111)负载的多功能Pd-Rh电催化剂在碱性环境下的稳定性:电子金属-负载相互作用的影响","authors":"Alexander Simanenko, Jan Škvára, Pankaj kumar Samal, Evanie Franz, Robert Hübsch, Tomas Skala, Nataliya Tsud, Sascha Mehl, Daniel Schauermann, Viktor Johánek, Josef Mysliveček, Olaf Brummel, Yaroslava Lykhach, Joerg Libuda","doi":"10.1039/d5nr00413f","DOIUrl":null,"url":null,"abstract":"The stabilities of monometallic Rh and Pd nanoparticles and bimetallic Pd–Rh core–shell nanoparticles supported on Co<small><sub>3</sub></small>O<small><sub>4</sub></small>(111) thin films grown on Ir(100) were investigated with respect to the oxidation state and dissolution in alkaline electrolyte under the conditions relevant for electrochemical ethanol oxidation. Towards this aim, the well-defined model systems were characterized by means of synchrotron radiation photoelectron spectroscopy coupled with an <em>ex situ</em> emersion electrochemical cell (EC-SRPES) and scanning tunneling microscopy (STM). We found that the electronic metal–support interaction (EMSI) has a strong influence on the oxidation state of Rh, resulting in a strong oxidation and anchoring of the oxidized Rh<small><sup>3+</sup></small> species on the surface of Co<small><sub>3</sub></small>O<small><sub>4</sub></small>(111). Consequently, the EMSI prevents the dissolution of Rh into the electrolyte regardless of the potential range. In contrast, it has no effect on the oxidation state and dissolution of Pd in the potential range of 0.3–1.1 V<small><sub>RHE</sub></small>. However, extending the potential range to 0.3–1.5 V<small><sub>RHE</sub></small> results in a stronger dissolution of Pd due to the reversible oxidation/reduction of Pd, which is enhanced in the presence of the EMSI. Most importantly, the magnitude of the EMSI and, thus, the extent of noble metal oxidation, can be effectively controlled by the nature of the metal/Co<small><sub>3</sub></small>O<small><sub>4</sub></small>(111) interface in the bimetallic Pd–Rh core–shell nanoparticles.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"183 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of multifunctional Pd‒Rh electrocatalysts supported on Co3O4(111) in alkaline environment: Impact of the electronic metal‒support interaction\",\"authors\":\"Alexander Simanenko, Jan Škvára, Pankaj kumar Samal, Evanie Franz, Robert Hübsch, Tomas Skala, Nataliya Tsud, Sascha Mehl, Daniel Schauermann, Viktor Johánek, Josef Mysliveček, Olaf Brummel, Yaroslava Lykhach, Joerg Libuda\",\"doi\":\"10.1039/d5nr00413f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stabilities of monometallic Rh and Pd nanoparticles and bimetallic Pd–Rh core–shell nanoparticles supported on Co<small><sub>3</sub></small>O<small><sub>4</sub></small>(111) thin films grown on Ir(100) were investigated with respect to the oxidation state and dissolution in alkaline electrolyte under the conditions relevant for electrochemical ethanol oxidation. Towards this aim, the well-defined model systems were characterized by means of synchrotron radiation photoelectron spectroscopy coupled with an <em>ex situ</em> emersion electrochemical cell (EC-SRPES) and scanning tunneling microscopy (STM). We found that the electronic metal–support interaction (EMSI) has a strong influence on the oxidation state of Rh, resulting in a strong oxidation and anchoring of the oxidized Rh<small><sup>3+</sup></small> species on the surface of Co<small><sub>3</sub></small>O<small><sub>4</sub></small>(111). Consequently, the EMSI prevents the dissolution of Rh into the electrolyte regardless of the potential range. In contrast, it has no effect on the oxidation state and dissolution of Pd in the potential range of 0.3–1.1 V<small><sub>RHE</sub></small>. However, extending the potential range to 0.3–1.5 V<small><sub>RHE</sub></small> results in a stronger dissolution of Pd due to the reversible oxidation/reduction of Pd, which is enhanced in the presence of the EMSI. Most importantly, the magnitude of the EMSI and, thus, the extent of noble metal oxidation, can be effectively controlled by the nature of the metal/Co<small><sub>3</sub></small>O<small><sub>4</sub></small>(111) interface in the bimetallic Pd–Rh core–shell nanoparticles.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr00413f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00413f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了在Ir(100)上生长的Co3O4(111)薄膜上负载的单金属Rh和Pd纳米粒子和双金属Pd - Rh核壳纳米粒子在碱性电解质中的氧化态和溶解性,以及与乙醇电化学氧化相关的条件。为此,利用同步辐射光电子能谱与非原位重现电化学电池(EC-SRPES)和扫描隧道显微镜(STM)对模型系统进行了表征。我们发现电子金属-载体相互作用(EMSI)对Rh的氧化态有很强的影响,导致氧化后的Rh3+在Co3O4表面发生强烈的氧化和锚定(111)。因此,无论电势范围如何,EMSI都可以防止Rh溶解到电解质中。而在0.3 ~ 1.1 VRHE电位范围内,对Pd的氧化态和溶解没有影响。然而,当电位范围扩大到0.3-1.5 VRHE时,由于Pd的可逆氧化/还原,Pd的溶解更强,EMSI的存在增强了Pd的溶解。最重要的是,EMSI的大小以及贵金属氧化的程度可以通过双金属Pd-Rh核壳纳米颗粒中金属/Co3O4(111)界面的性质来有效控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of multifunctional Pd‒Rh electrocatalysts supported on Co3O4(111) in alkaline environment: Impact of the electronic metal‒support interaction
The stabilities of monometallic Rh and Pd nanoparticles and bimetallic Pd–Rh core–shell nanoparticles supported on Co3O4(111) thin films grown on Ir(100) were investigated with respect to the oxidation state and dissolution in alkaline electrolyte under the conditions relevant for electrochemical ethanol oxidation. Towards this aim, the well-defined model systems were characterized by means of synchrotron radiation photoelectron spectroscopy coupled with an ex situ emersion electrochemical cell (EC-SRPES) and scanning tunneling microscopy (STM). We found that the electronic metal–support interaction (EMSI) has a strong influence on the oxidation state of Rh, resulting in a strong oxidation and anchoring of the oxidized Rh3+ species on the surface of Co3O4(111). Consequently, the EMSI prevents the dissolution of Rh into the electrolyte regardless of the potential range. In contrast, it has no effect on the oxidation state and dissolution of Pd in the potential range of 0.3–1.1 VRHE. However, extending the potential range to 0.3–1.5 VRHE results in a stronger dissolution of Pd due to the reversible oxidation/reduction of Pd, which is enhanced in the presence of the EMSI. Most importantly, the magnitude of the EMSI and, thus, the extent of noble metal oxidation, can be effectively controlled by the nature of the metal/Co3O4(111) interface in the bimetallic Pd–Rh core–shell nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信