{"title":"电压检测环境条件下金刚石的单自旋动力学","authors":"Sergei Trofimov, Klaus Lips, Boris Naydenov","doi":"10.1038/s41467-025-58635-3","DOIUrl":null,"url":null,"abstract":"<p>Defect centres in crystals like diamond or silicon find a wide application in quantum technology, where the detection and control of their quantum states is crucial for their implementation as quantum sensors and qubits. The quantum information is usually encoded in the spin state of these defect centres, but they also often possess a charge which is typically not utilized. We report here the detection of elementary charges bound to single nitrogen-vacancy (NV) centres several nanometres below the diamond surface using Kelvin Probe Force Microscopy (KPFM) under laser illumination. Moreover, the measured signal depends on the NV’s electron spin state, thus allowing to perform a non-optical single spin readout, a technique we refer to as “Surface Voltage Detected Magnetic Resonance” (SVDMR). Our method opens a way of coherent spin dynamics detection for quantum sensing applications and could be potentially applied to other solid state systems. We believe that this voltage-based readout would help to simplify the design of devices for quantum technology.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage detected single spin dynamics in diamond at ambient conditions\",\"authors\":\"Sergei Trofimov, Klaus Lips, Boris Naydenov\",\"doi\":\"10.1038/s41467-025-58635-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Defect centres in crystals like diamond or silicon find a wide application in quantum technology, where the detection and control of their quantum states is crucial for their implementation as quantum sensors and qubits. The quantum information is usually encoded in the spin state of these defect centres, but they also often possess a charge which is typically not utilized. We report here the detection of elementary charges bound to single nitrogen-vacancy (NV) centres several nanometres below the diamond surface using Kelvin Probe Force Microscopy (KPFM) under laser illumination. Moreover, the measured signal depends on the NV’s electron spin state, thus allowing to perform a non-optical single spin readout, a technique we refer to as “Surface Voltage Detected Magnetic Resonance” (SVDMR). Our method opens a way of coherent spin dynamics detection for quantum sensing applications and could be potentially applied to other solid state systems. We believe that this voltage-based readout would help to simplify the design of devices for quantum technology.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58635-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58635-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Voltage detected single spin dynamics in diamond at ambient conditions
Defect centres in crystals like diamond or silicon find a wide application in quantum technology, where the detection and control of their quantum states is crucial for their implementation as quantum sensors and qubits. The quantum information is usually encoded in the spin state of these defect centres, but they also often possess a charge which is typically not utilized. We report here the detection of elementary charges bound to single nitrogen-vacancy (NV) centres several nanometres below the diamond surface using Kelvin Probe Force Microscopy (KPFM) under laser illumination. Moreover, the measured signal depends on the NV’s electron spin state, thus allowing to perform a non-optical single spin readout, a technique we refer to as “Surface Voltage Detected Magnetic Resonance” (SVDMR). Our method opens a way of coherent spin dynamics detection for quantum sensing applications and could be potentially applied to other solid state systems. We believe that this voltage-based readout would help to simplify the design of devices for quantum technology.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.