原子协同催化实现高性能锌碘水电池

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qingshan Liu, Shixin Wang, Jian Lang, Jinghan Wang, Jiqiang Zhan, Hongyan Liu, Youhui Qi, Zongyu Wu, Hongpeng Li, Xiaojing Lin, Hongsen Li
{"title":"原子协同催化实现高性能锌碘水电池","authors":"Qingshan Liu, Shixin Wang, Jian Lang, Jinghan Wang, Jiqiang Zhan, Hongyan Liu, Youhui Qi, Zongyu Wu, Hongpeng Li, Xiaojing Lin, Hongsen Li","doi":"10.1021/acs.nanolett.5c00279","DOIUrl":null,"url":null,"abstract":"Aqueous zinc–iodine batteries (AZIBs) are attractive energy storage systems with the features of low cost, sustainability, and efficient multielectron transfer mechanism. However, the I<sub>2</sub> cathodes face obstacles due to the sluggish redox kinetics and severe shuttle effect. Herein, the atomically dispersed selenium single atoms (Se SAs) are embedded in ZIF-8-derived nitrogen-doped carbon. This design not only triggers the rapid redox conversion of I<sub>2</sub> but also enhances the anchoring of polyiodides, thereby enabling the excellent lifespan and rate capability of the Zn–I<sub>2</sub> battery. Specifically, the Se SAs and N dopants on carbon achieve a rapid I<sub>2</sub>/I<sup>–</sup> couple conversion reaction via modulation of the conversion energy barrier, as revealed by in situ results coupled with density functional theory analysis. This work demonstrates the application of atomic synergy in facilitating the reversible conversion of iodine species and provides valuable insights into designing efficient I<sub>2</sub> hosts for next-generation AZIBs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"75 6 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Synergy Catalysis Enables High-Performing Aqueous Zinc–Iodine Batteries\",\"authors\":\"Qingshan Liu, Shixin Wang, Jian Lang, Jinghan Wang, Jiqiang Zhan, Hongyan Liu, Youhui Qi, Zongyu Wu, Hongpeng Li, Xiaojing Lin, Hongsen Li\",\"doi\":\"10.1021/acs.nanolett.5c00279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc–iodine batteries (AZIBs) are attractive energy storage systems with the features of low cost, sustainability, and efficient multielectron transfer mechanism. However, the I<sub>2</sub> cathodes face obstacles due to the sluggish redox kinetics and severe shuttle effect. Herein, the atomically dispersed selenium single atoms (Se SAs) are embedded in ZIF-8-derived nitrogen-doped carbon. This design not only triggers the rapid redox conversion of I<sub>2</sub> but also enhances the anchoring of polyiodides, thereby enabling the excellent lifespan and rate capability of the Zn–I<sub>2</sub> battery. Specifically, the Se SAs and N dopants on carbon achieve a rapid I<sub>2</sub>/I<sup>–</sup> couple conversion reaction via modulation of the conversion energy barrier, as revealed by in situ results coupled with density functional theory analysis. This work demonstrates the application of atomic synergy in facilitating the reversible conversion of iodine species and provides valuable insights into designing efficient I<sub>2</sub> hosts for next-generation AZIBs.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"75 6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c00279\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00279","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水相锌碘电池(AZIBs)具有低成本、可持续性和高效的多电子转移机制等特点,是一种极具吸引力的储能系统。然而,由于氧化还原动力学缓慢和严重的穿梭效应,I2阴极面临障碍。在这里,原子分散的硒单原子(Se SAs)被嵌入到zif -8衍生的氮掺杂碳中。该设计不仅触发了I2的快速氧化还原转化,而且增强了多碘化物的锚定,从而使Zn-I2电池具有优异的寿命和倍率能力。具体来说,碳上的Se - SAs和N掺杂剂通过调制转换能垒实现了快速的I2/I -偶转换反应,这是由原位结果和密度泛函理论分析揭示的。这项工作证明了原子协同作用在促进碘物种可逆转化中的应用,并为设计下一代azib的高效I2宿主提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomic Synergy Catalysis Enables High-Performing Aqueous Zinc–Iodine Batteries

Atomic Synergy Catalysis Enables High-Performing Aqueous Zinc–Iodine Batteries
Aqueous zinc–iodine batteries (AZIBs) are attractive energy storage systems with the features of low cost, sustainability, and efficient multielectron transfer mechanism. However, the I2 cathodes face obstacles due to the sluggish redox kinetics and severe shuttle effect. Herein, the atomically dispersed selenium single atoms (Se SAs) are embedded in ZIF-8-derived nitrogen-doped carbon. This design not only triggers the rapid redox conversion of I2 but also enhances the anchoring of polyiodides, thereby enabling the excellent lifespan and rate capability of the Zn–I2 battery. Specifically, the Se SAs and N dopants on carbon achieve a rapid I2/I couple conversion reaction via modulation of the conversion energy barrier, as revealed by in situ results coupled with density functional theory analysis. This work demonstrates the application of atomic synergy in facilitating the reversible conversion of iodine species and provides valuable insights into designing efficient I2 hosts for next-generation AZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信