Wenbao Yu, Rumeysa Biyik-Sit, Yasin Uzun, Chia-Hui Chen, Anusha Thadi, Jonathan H. Sussman, Minxing Pang, Chi-Yun Wu, Liron D. Grossmann, Peng Gao, David W. Wu, Aliza Yousey, Mei Zhang, Christina S. Turn, Zhan Zhang, Shovik Bandyopadhyay, Jeffrey Huang, Tasleema Patel, Changya Chen, Daniel Martinez, Lea F. Surrey, Michael D. Hogarty, Kathrin Bernt, Nancy R. Zhang, John M. Maris, Kai Tan
{"title":"高风险神经母细胞瘤的纵向单细胞多组图谱揭示了化疗诱导的肿瘤微环境重新布线","authors":"Wenbao Yu, Rumeysa Biyik-Sit, Yasin Uzun, Chia-Hui Chen, Anusha Thadi, Jonathan H. Sussman, Minxing Pang, Chi-Yun Wu, Liron D. Grossmann, Peng Gao, David W. Wu, Aliza Yousey, Mei Zhang, Christina S. Turn, Zhan Zhang, Shovik Bandyopadhyay, Jeffrey Huang, Tasleema Patel, Changya Chen, Daniel Martinez, Lea F. Surrey, Michael D. Hogarty, Kathrin Bernt, Nancy R. Zhang, John M. Maris, Kai Tan","doi":"10.1038/s41588-025-02158-6","DOIUrl":null,"url":null,"abstract":"High-risk neuroblastoma, a leading cause of pediatric cancer mortality, exhibits substantial intratumoral heterogeneity, contributing to therapeutic resistance. To understand tumor microenvironment evolution during therapy, we longitudinally profiled 22 patients with high-risk neuroblastoma before and after induction chemotherapy using single-nucleus RNA and ATAC sequencing and whole-genome sequencing. This revealed profound shifts in tumor and immune cell subpopulations after therapy and identified enhancer-driven transcriptional regulators of neuroblastoma neoplastic states. Poor outcome correlated with proliferative and metabolically active neoplastic states, whereas more differentiated neuronal-like states predicted better prognosis. Proportions of mesenchymal neoplastic cells increased after therapy and a high proportion correlated with a poorer chemotherapy response. Macrophages significantly expanded towards pro-angiogenic, immunosuppressive and metabolic phenotypes. We identified paracrine signaling networks and validated the HB-EGF–ERBB4 axis between macrophage and neoplastic subsets, which promoted tumor growth through the induction of ERK signaling. These findings collectively reveal intrinsic and extrinsic regulators of therapy response in high-risk neuroblastoma. Analysis of pre- and post-chemotherapy samples collected from 22 patients with high-risk neuroblastoma using single-nucleus RNA and ATAC sequencing and spatial omics characterizes therapy-related changes in cell composition and the tumor microenvironment.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 5","pages":"1142-1154"},"PeriodicalIF":31.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-025-02158-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Longitudinal single-cell multiomic atlas of high-risk neuroblastoma reveals chemotherapy-induced tumor microenvironment rewiring\",\"authors\":\"Wenbao Yu, Rumeysa Biyik-Sit, Yasin Uzun, Chia-Hui Chen, Anusha Thadi, Jonathan H. Sussman, Minxing Pang, Chi-Yun Wu, Liron D. Grossmann, Peng Gao, David W. Wu, Aliza Yousey, Mei Zhang, Christina S. Turn, Zhan Zhang, Shovik Bandyopadhyay, Jeffrey Huang, Tasleema Patel, Changya Chen, Daniel Martinez, Lea F. Surrey, Michael D. Hogarty, Kathrin Bernt, Nancy R. Zhang, John M. Maris, Kai Tan\",\"doi\":\"10.1038/s41588-025-02158-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-risk neuroblastoma, a leading cause of pediatric cancer mortality, exhibits substantial intratumoral heterogeneity, contributing to therapeutic resistance. To understand tumor microenvironment evolution during therapy, we longitudinally profiled 22 patients with high-risk neuroblastoma before and after induction chemotherapy using single-nucleus RNA and ATAC sequencing and whole-genome sequencing. This revealed profound shifts in tumor and immune cell subpopulations after therapy and identified enhancer-driven transcriptional regulators of neuroblastoma neoplastic states. Poor outcome correlated with proliferative and metabolically active neoplastic states, whereas more differentiated neuronal-like states predicted better prognosis. Proportions of mesenchymal neoplastic cells increased after therapy and a high proportion correlated with a poorer chemotherapy response. Macrophages significantly expanded towards pro-angiogenic, immunosuppressive and metabolic phenotypes. We identified paracrine signaling networks and validated the HB-EGF–ERBB4 axis between macrophage and neoplastic subsets, which promoted tumor growth through the induction of ERK signaling. These findings collectively reveal intrinsic and extrinsic regulators of therapy response in high-risk neuroblastoma. Analysis of pre- and post-chemotherapy samples collected from 22 patients with high-risk neuroblastoma using single-nucleus RNA and ATAC sequencing and spatial omics characterizes therapy-related changes in cell composition and the tumor microenvironment.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"57 5\",\"pages\":\"1142-1154\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41588-025-02158-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-025-02158-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02158-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
High-risk neuroblastoma, a leading cause of pediatric cancer mortality, exhibits substantial intratumoral heterogeneity, contributing to therapeutic resistance. To understand tumor microenvironment evolution during therapy, we longitudinally profiled 22 patients with high-risk neuroblastoma before and after induction chemotherapy using single-nucleus RNA and ATAC sequencing and whole-genome sequencing. This revealed profound shifts in tumor and immune cell subpopulations after therapy and identified enhancer-driven transcriptional regulators of neuroblastoma neoplastic states. Poor outcome correlated with proliferative and metabolically active neoplastic states, whereas more differentiated neuronal-like states predicted better prognosis. Proportions of mesenchymal neoplastic cells increased after therapy and a high proportion correlated with a poorer chemotherapy response. Macrophages significantly expanded towards pro-angiogenic, immunosuppressive and metabolic phenotypes. We identified paracrine signaling networks and validated the HB-EGF–ERBB4 axis between macrophage and neoplastic subsets, which promoted tumor growth through the induction of ERK signaling. These findings collectively reveal intrinsic and extrinsic regulators of therapy response in high-risk neuroblastoma. Analysis of pre- and post-chemotherapy samples collected from 22 patients with high-risk neuroblastoma using single-nucleus RNA and ATAC sequencing and spatial omics characterizes therapy-related changes in cell composition and the tumor microenvironment.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution