小麦串联激酶RWT4直接结合真菌效应物激活防御

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
Yi-Chang Sung, Yinghui Li, Zoe Bernasconi, Suji Baik, Soichiro Asuke, Beat Keller, Tzion Fahima, Gitta Coaker
{"title":"小麦串联激酶RWT4直接结合真菌效应物激活防御","authors":"Yi-Chang Sung, Yinghui Li, Zoe Bernasconi, Suji Baik, Soichiro Asuke, Beat Keller, Tzion Fahima, Gitta Coaker","doi":"10.1038/s41588-025-02162-w","DOIUrl":null,"url":null,"abstract":"Plants have intricate innate immune receptors that detect pathogens. Research has intensely focused on two receptor classes recognizing external and internal threats. Recent research has identified a class of disease-resistance proteins called tandem kinase proteins (TKPs). We investigated RWT4, a wheat TKP that confers resistance to the devastating fungal pathogen Magnaporthe oryzae. We established a rice protoplast system, revealing RWT4 specifically recognizes the AvrPWT4 effector, leading to the transcription of defense genes and inducing cell death. RWT4 possesses both kinase and pseudokinase domains, with its kinase activity essential for defense. RWT4 directly interacts with and transphosphorylates AvrPWT4. Biolayer interferometry revealed both RWT4 kinase and pseudokinase regions bind the effector. Sequence similarity and structural modeling revealed a partial kinase duplication in RWT4’s kinase region as critical for effector interaction and defense activation. Collectively, these findings demonstrate that TKPs can directly bind a recognized effector, leading to downstream defense activation. This study shows that RWT4, a wheat tandem kinase, confers resistance to the fungal pathogen Magnaporthe oryzae by directly binding to the pathogen effector AvrPWT4 and activating host defense.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 5","pages":"1238-1249"},"PeriodicalIF":31.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wheat tandem kinase RWT4 directly binds a fungal effector to activate defense\",\"authors\":\"Yi-Chang Sung, Yinghui Li, Zoe Bernasconi, Suji Baik, Soichiro Asuke, Beat Keller, Tzion Fahima, Gitta Coaker\",\"doi\":\"10.1038/s41588-025-02162-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants have intricate innate immune receptors that detect pathogens. Research has intensely focused on two receptor classes recognizing external and internal threats. Recent research has identified a class of disease-resistance proteins called tandem kinase proteins (TKPs). We investigated RWT4, a wheat TKP that confers resistance to the devastating fungal pathogen Magnaporthe oryzae. We established a rice protoplast system, revealing RWT4 specifically recognizes the AvrPWT4 effector, leading to the transcription of defense genes and inducing cell death. RWT4 possesses both kinase and pseudokinase domains, with its kinase activity essential for defense. RWT4 directly interacts with and transphosphorylates AvrPWT4. Biolayer interferometry revealed both RWT4 kinase and pseudokinase regions bind the effector. Sequence similarity and structural modeling revealed a partial kinase duplication in RWT4’s kinase region as critical for effector interaction and defense activation. Collectively, these findings demonstrate that TKPs can directly bind a recognized effector, leading to downstream defense activation. This study shows that RWT4, a wheat tandem kinase, confers resistance to the fungal pathogen Magnaporthe oryzae by directly binding to the pathogen effector AvrPWT4 and activating host defense.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"57 5\",\"pages\":\"1238-1249\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-025-02162-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02162-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

植物有复杂的先天免疫受体来检测病原体。研究主要集中在识别外部和内部威胁的两类受体上。最近的研究发现了一类称为串联激酶蛋白(TKPs)的抗病蛋白。我们研究了RWT4,这是一种小麦TKP,赋予对破坏性真菌病原体稻瘟病的抗性。我们建立了一个水稻原生质体系统,发现RWT4特异性识别AvrPWT4效应物,导致防御基因转录并诱导细胞死亡。RWT4同时具有激酶和假激酶结构域,其激酶活性对防御至关重要。RWT4直接与AvrPWT4相互作用并使其转磷酸化。生物层干涉术显示RWT4激酶和伪激酶区域结合效应物。序列相似性和结构建模显示,RWT4激酶区域的部分激酶重复对效应物相互作用和防御激活至关重要。总的来说,这些发现表明TKPs可以直接结合已知的效应物,导致下游防御激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wheat tandem kinase RWT4 directly binds a fungal effector to activate defense

Wheat tandem kinase RWT4 directly binds a fungal effector to activate defense
Plants have intricate innate immune receptors that detect pathogens. Research has intensely focused on two receptor classes recognizing external and internal threats. Recent research has identified a class of disease-resistance proteins called tandem kinase proteins (TKPs). We investigated RWT4, a wheat TKP that confers resistance to the devastating fungal pathogen Magnaporthe oryzae. We established a rice protoplast system, revealing RWT4 specifically recognizes the AvrPWT4 effector, leading to the transcription of defense genes and inducing cell death. RWT4 possesses both kinase and pseudokinase domains, with its kinase activity essential for defense. RWT4 directly interacts with and transphosphorylates AvrPWT4. Biolayer interferometry revealed both RWT4 kinase and pseudokinase regions bind the effector. Sequence similarity and structural modeling revealed a partial kinase duplication in RWT4’s kinase region as critical for effector interaction and defense activation. Collectively, these findings demonstrate that TKPs can directly bind a recognized effector, leading to downstream defense activation. This study shows that RWT4, a wheat tandem kinase, confers resistance to the fungal pathogen Magnaporthe oryzae by directly binding to the pathogen effector AvrPWT4 and activating host defense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信