优化锂离子电池的功率性能:隔板孔隙率和电极质量载荷的作用

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Seungyeop Choi, Jun Pyo Seo, Jaejin Lim, Cyril Bubu Dzakpasu, Youngjoon Roh, Cheol Bak, Suhwan Kim, Prof. Hongkyung Lee, Prof. Yong Min Lee
{"title":"优化锂离子电池的功率性能:隔板孔隙率和电极质量载荷的作用","authors":"Seungyeop Choi,&nbsp;Jun Pyo Seo,&nbsp;Jaejin Lim,&nbsp;Cyril Bubu Dzakpasu,&nbsp;Youngjoon Roh,&nbsp;Cheol Bak,&nbsp;Suhwan Kim,&nbsp;Prof. Hongkyung Lee,&nbsp;Prof. Yong Min Lee","doi":"10.1002/batt.202400638","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the concealed effect of separator porosity on the electrochemical performance of lithium-ion batteries (LIBs) in thin and thick electrode configuration. The effect of the separator is expected to be more pronounced in cells with thin electrodes due to its high volumetric/resistance ratio within the cell. However, the electrochemical analyses show similar power performance regardless of the separator porosity in the thin electrode configuration. In contrast, for cells with thick electrodes, separator porosity significantly impacts the direct current-internal resistance (DC-IR) and the capacity retention at a high rate. This behavior is attributed to ion concentration gradients in the upper regions of thick electrodes, while Li<sup>+</sup> transfer to lower regions is hampered as the electrode thickness increases. These findings suggest that the intrinsic properties of individual cell components, such as separator porosity, are highly dependent on the overall cell design. Moreover, while high-porosity separators enhance power performance, particularly in thick electrode configurations, they exhibit lower thermal stability and tensile strength. In conclusion, this study highlights the need for an integrated approach to optimizing separator characteristics, considering both electrochemical performance and safety trade-offs in LIBs.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 4","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Power Performance of Lithium-Ion Batteries: The Role of Separator Porosity and Electrode Mass Loading\",\"authors\":\"Seungyeop Choi,&nbsp;Jun Pyo Seo,&nbsp;Jaejin Lim,&nbsp;Cyril Bubu Dzakpasu,&nbsp;Youngjoon Roh,&nbsp;Cheol Bak,&nbsp;Suhwan Kim,&nbsp;Prof. Hongkyung Lee,&nbsp;Prof. Yong Min Lee\",\"doi\":\"10.1002/batt.202400638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the concealed effect of separator porosity on the electrochemical performance of lithium-ion batteries (LIBs) in thin and thick electrode configuration. The effect of the separator is expected to be more pronounced in cells with thin electrodes due to its high volumetric/resistance ratio within the cell. However, the electrochemical analyses show similar power performance regardless of the separator porosity in the thin electrode configuration. In contrast, for cells with thick electrodes, separator porosity significantly impacts the direct current-internal resistance (DC-IR) and the capacity retention at a high rate. This behavior is attributed to ion concentration gradients in the upper regions of thick electrodes, while Li<sup>+</sup> transfer to lower regions is hampered as the electrode thickness increases. These findings suggest that the intrinsic properties of individual cell components, such as separator porosity, are highly dependent on the overall cell design. Moreover, while high-porosity separators enhance power performance, particularly in thick electrode configurations, they exhibit lower thermal stability and tensile strength. In conclusion, this study highlights the need for an integrated approach to optimizing separator characteristics, considering both electrochemical performance and safety trade-offs in LIBs.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400638\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400638","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在薄电极和厚电极配置下,隔膜孔隙度对锂离子电池电化学性能的隐性影响。由于其在电池内的高体积/电阻比,隔膜的效果预计将在具有薄电极的电池中更加明显。然而,电化学分析表明,在薄电极结构中,无论分离器孔隙率如何,功率性能都是相似的。相比之下,对于具有厚电极的电池,隔板孔隙率显著影响直流内阻(DC-IR)和高速率的容量保持。这种行为归因于厚电极上部区域的离子浓度梯度,而随着电极厚度的增加,Li+向下部区域的转移受到阻碍。这些发现表明,单个电池组件的内在特性,如分离器孔隙度,高度依赖于整体电池设计。此外,虽然高孔隙率分离器提高了功率性能,特别是在厚电极配置中,但它们表现出较低的热稳定性和抗拉强度。总之,本研究强调了在考虑电化学性能和安全权衡的情况下,需要一种综合方法来优化lib的分离器特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing the Power Performance of Lithium-Ion Batteries: The Role of Separator Porosity and Electrode Mass Loading

Optimizing the Power Performance of Lithium-Ion Batteries: The Role of Separator Porosity and Electrode Mass Loading

This study investigates the concealed effect of separator porosity on the electrochemical performance of lithium-ion batteries (LIBs) in thin and thick electrode configuration. The effect of the separator is expected to be more pronounced in cells with thin electrodes due to its high volumetric/resistance ratio within the cell. However, the electrochemical analyses show similar power performance regardless of the separator porosity in the thin electrode configuration. In contrast, for cells with thick electrodes, separator porosity significantly impacts the direct current-internal resistance (DC-IR) and the capacity retention at a high rate. This behavior is attributed to ion concentration gradients in the upper regions of thick electrodes, while Li+ transfer to lower regions is hampered as the electrode thickness increases. These findings suggest that the intrinsic properties of individual cell components, such as separator porosity, are highly dependent on the overall cell design. Moreover, while high-porosity separators enhance power performance, particularly in thick electrode configurations, they exhibit lower thermal stability and tensile strength. In conclusion, this study highlights the need for an integrated approach to optimizing separator characteristics, considering both electrochemical performance and safety trade-offs in LIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信