{"title":"复数和理想族的密度函数","authors":"Suprajo Das, Sudeshna Roy, Vijaylaxmi Trivedi","doi":"10.1112/jlms.70155","DOIUrl":null,"url":null,"abstract":"<p>A density function for an algebraic invariant is a measurable function on <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> which <i>measures</i> the invariant on an <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-scale. This function carries a lot more information related to the invariant without seeking extra data. It has turned out to be a useful tool, which was introduced by the third author in Trivedi [Trans. Amer. Math. Soc. <b>370</b> (2018), no. 12, 8403–8428], to study the characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> invariant, namely Hilbert–Kunz multiplicity of a homogeneous <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>${\\bf m}$</annotation>\n </semantics></math>-primary ideal. Here, we construct <i>density functions</i> <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace I_n\\rbrace }$</annotation>\n </semantics></math> for a Noetherian filtration <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n </msub>\n <annotation>$\\lbrace I_n\\rbrace _{n\\in {\\mathbb {N}}}$</annotation>\n </semantics></math> of homogeneous ideals and <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <mover>\n <msup>\n <mi>I</mi>\n <mi>n</mi>\n </msup>\n <mo>∼</mo>\n </mover>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace \\widetilde{I^n}\\rbrace }$</annotation>\n </semantics></math> for a filtration given by the saturated powers of a homogeneous ideal <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>$I$</annotation>\n </semantics></math> in a standard graded domain <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. As a consequence, we get a density function <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$f_{\\varepsilon (I)}$</annotation>\n </semantics></math> for the epsilon multiplicity <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varepsilon (I)$</annotation>\n </semantics></math> of a homogeneous ideal <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>$I$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. We further show that the function <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace I_n\\rbrace }$</annotation>\n </semantics></math> is continuous everywhere except possibly at one point, and <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <mover>\n <msup>\n <mi>I</mi>\n <mi>n</mi>\n </msup>\n <mo>∼</mo>\n </mover>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace \\widetilde{I^n}\\rbrace }$</annotation>\n </semantics></math> is a continuous function everywhere and is continuously differentiable except possibly at one point. As a corollary, the epsilon density function <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$f_{\\varepsilon (I)}$</annotation>\n </semantics></math> is a compactly supported continuous function on <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> except at one point, such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>∫</mo>\n <msub>\n <mi>R</mi>\n <mrow>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </msub>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>ε</mi>\n <mrow>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\int _{\\mathbb {R}_{\\geqslant 0}} f_{\\varepsilon (I)} = \\varepsilon (I)$</annotation>\n </semantics></math>. All the three functions <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <msup>\n <mi>I</mi>\n <mi>n</mi>\n </msup>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace I^n\\rbrace }$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <mover>\n <msup>\n <mi>I</mi>\n <mi>n</mi>\n </msup>\n <mo>∼</mo>\n </mover>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace \\widetilde{I^n}\\rbrace }$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$f_{\\varepsilon (I)}$</annotation>\n </semantics></math> remain invariant under passage to the integral closure of <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>$I$</annotation>\n </semantics></math>. As a corollary of this theory, we observe that the ‘rescaled’ Hilbert–Samuel multiplicities of the diagonal subalgebras form a continuous family.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70155","citationCount":"0","resultStr":"{\"title\":\"Density functions for epsilon multiplicity and families of ideals\",\"authors\":\"Suprajo Das, Sudeshna Roy, Vijaylaxmi Trivedi\",\"doi\":\"10.1112/jlms.70155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A density function for an algebraic invariant is a measurable function on <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> which <i>measures</i> the invariant on an <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math>-scale. This function carries a lot more information related to the invariant without seeking extra data. It has turned out to be a useful tool, which was introduced by the third author in Trivedi [Trans. Amer. Math. Soc. <b>370</b> (2018), no. 12, 8403–8428], to study the characteristic <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> invariant, namely Hilbert–Kunz multiplicity of a homogeneous <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>${\\\\bf m}$</annotation>\\n </semantics></math>-primary ideal. Here, we construct <i>density functions</i> <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace I_n\\\\rbrace }$</annotation>\\n </semantics></math> for a Noetherian filtration <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace I_n\\\\rbrace _{n\\\\in {\\\\mathbb {N}}}$</annotation>\\n </semantics></math> of homogeneous ideals and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <mover>\\n <msup>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∼</mo>\\n </mover>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace \\\\widetilde{I^n}\\\\rbrace }$</annotation>\\n </semantics></math> for a filtration given by the saturated powers of a homogeneous ideal <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>$I$</annotation>\\n </semantics></math> in a standard graded domain <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>. As a consequence, we get a density function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{\\\\varepsilon (I)}$</annotation>\\n </semantics></math> for the epsilon multiplicity <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\varepsilon (I)$</annotation>\\n </semantics></math> of a homogeneous ideal <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>$I$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>. We further show that the function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace I_n\\\\rbrace }$</annotation>\\n </semantics></math> is continuous everywhere except possibly at one point, and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <mover>\\n <msup>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∼</mo>\\n </mover>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace \\\\widetilde{I^n}\\\\rbrace }$</annotation>\\n </semantics></math> is a continuous function everywhere and is continuously differentiable except possibly at one point. As a corollary, the epsilon density function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{\\\\varepsilon (I)}$</annotation>\\n </semantics></math> is a compactly supported continuous function on <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> except at one point, such that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>∫</mo>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mo>⩾</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </msub>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mi>ε</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\int _{\\\\mathbb {R}_{\\\\geqslant 0}} f_{\\\\varepsilon (I)} = \\\\varepsilon (I)$</annotation>\\n </semantics></math>. All the three functions <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <msup>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace I^n\\\\rbrace }$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <mover>\\n <msup>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∼</mo>\\n </mover>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace \\\\widetilde{I^n}\\\\rbrace }$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{\\\\varepsilon (I)}$</annotation>\\n </semantics></math> remain invariant under passage to the integral closure of <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>$I$</annotation>\\n </semantics></math>. As a corollary of this theory, we observe that the ‘rescaled’ Hilbert–Samuel multiplicities of the diagonal subalgebras form a continuous family.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70155\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70155","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Density functions for epsilon multiplicity and families of ideals
A density function for an algebraic invariant is a measurable function on which measures the invariant on an -scale. This function carries a lot more information related to the invariant without seeking extra data. It has turned out to be a useful tool, which was introduced by the third author in Trivedi [Trans. Amer. Math. Soc. 370 (2018), no. 12, 8403–8428], to study the characteristic invariant, namely Hilbert–Kunz multiplicity of a homogeneous -primary ideal. Here, we construct density functions for a Noetherian filtration of homogeneous ideals and for a filtration given by the saturated powers of a homogeneous ideal in a standard graded domain . As a consequence, we get a density function for the epsilon multiplicity of a homogeneous ideal in . We further show that the function is continuous everywhere except possibly at one point, and is a continuous function everywhere and is continuously differentiable except possibly at one point. As a corollary, the epsilon density function is a compactly supported continuous function on except at one point, such that . All the three functions , and remain invariant under passage to the integral closure of . As a corollary of this theory, we observe that the ‘rescaled’ Hilbert–Samuel multiplicities of the diagonal subalgebras form a continuous family.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.