复数和理想族的密度函数

IF 1 2区 数学 Q1 MATHEMATICS
Suprajo Das, Sudeshna Roy, Vijaylaxmi Trivedi
{"title":"复数和理想族的密度函数","authors":"Suprajo Das,&nbsp;Sudeshna Roy,&nbsp;Vijaylaxmi Trivedi","doi":"10.1112/jlms.70155","DOIUrl":null,"url":null,"abstract":"<p>A density function for an algebraic invariant is a measurable function on <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> which <i>measures</i> the invariant on an <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-scale. This function carries a lot more information related to the invariant without seeking extra data. It has turned out to be a useful tool, which was introduced by the third author in Trivedi [Trans. Amer. Math. Soc. <b>370</b> (2018), no. 12, 8403–8428], to study the characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> invariant, namely Hilbert–Kunz multiplicity of a homogeneous <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>${\\bf m}$</annotation>\n </semantics></math>-primary ideal. Here, we construct <i>density functions</i> <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace I_n\\rbrace }$</annotation>\n </semantics></math> for a Noetherian filtration <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n </msub>\n <annotation>$\\lbrace I_n\\rbrace _{n\\in {\\mathbb {N}}}$</annotation>\n </semantics></math> of homogeneous ideals and <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <mover>\n <msup>\n <mi>I</mi>\n <mi>n</mi>\n </msup>\n <mo>∼</mo>\n </mover>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace \\widetilde{I^n}\\rbrace }$</annotation>\n </semantics></math> for a filtration given by the saturated powers of a homogeneous ideal <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>$I$</annotation>\n </semantics></math> in a standard graded domain <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. As a consequence, we get a density function <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$f_{\\varepsilon (I)}$</annotation>\n </semantics></math> for the epsilon multiplicity <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varepsilon (I)$</annotation>\n </semantics></math> of a homogeneous ideal <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>$I$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. We further show that the function <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace I_n\\rbrace }$</annotation>\n </semantics></math> is continuous everywhere except possibly at one point, and <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <mover>\n <msup>\n <mi>I</mi>\n <mi>n</mi>\n </msup>\n <mo>∼</mo>\n </mover>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace \\widetilde{I^n}\\rbrace }$</annotation>\n </semantics></math> is a continuous function everywhere and is continuously differentiable except possibly at one point. As a corollary, the epsilon density function <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$f_{\\varepsilon (I)}$</annotation>\n </semantics></math> is a compactly supported continuous function on <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> except at one point, such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>∫</mo>\n <msub>\n <mi>R</mi>\n <mrow>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </msub>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>ε</mi>\n <mrow>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\int _{\\mathbb {R}_{\\geqslant 0}} f_{\\varepsilon (I)} = \\varepsilon (I)$</annotation>\n </semantics></math>. All the three functions <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <msup>\n <mi>I</mi>\n <mi>n</mi>\n </msup>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace I^n\\rbrace }$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mo>{</mo>\n <mover>\n <msup>\n <mi>I</mi>\n <mi>n</mi>\n </msup>\n <mo>∼</mo>\n </mover>\n <mo>}</mo>\n </mrow>\n </msub>\n <annotation>$f_{A,\\lbrace \\widetilde{I^n}\\rbrace }$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>ε</mi>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$f_{\\varepsilon (I)}$</annotation>\n </semantics></math> remain invariant under passage to the integral closure of <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>$I$</annotation>\n </semantics></math>. As a corollary of this theory, we observe that the ‘rescaled’ Hilbert–Samuel multiplicities of the diagonal subalgebras form a continuous family.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70155","citationCount":"0","resultStr":"{\"title\":\"Density functions for epsilon multiplicity and families of ideals\",\"authors\":\"Suprajo Das,&nbsp;Sudeshna Roy,&nbsp;Vijaylaxmi Trivedi\",\"doi\":\"10.1112/jlms.70155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A density function for an algebraic invariant is a measurable function on <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> which <i>measures</i> the invariant on an <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math>-scale. This function carries a lot more information related to the invariant without seeking extra data. It has turned out to be a useful tool, which was introduced by the third author in Trivedi [Trans. Amer. Math. Soc. <b>370</b> (2018), no. 12, 8403–8428], to study the characteristic <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> invariant, namely Hilbert–Kunz multiplicity of a homogeneous <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>${\\\\bf m}$</annotation>\\n </semantics></math>-primary ideal. Here, we construct <i>density functions</i> <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace I_n\\\\rbrace }$</annotation>\\n </semantics></math> for a Noetherian filtration <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace I_n\\\\rbrace _{n\\\\in {\\\\mathbb {N}}}$</annotation>\\n </semantics></math> of homogeneous ideals and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <mover>\\n <msup>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∼</mo>\\n </mover>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace \\\\widetilde{I^n}\\\\rbrace }$</annotation>\\n </semantics></math> for a filtration given by the saturated powers of a homogeneous ideal <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>$I$</annotation>\\n </semantics></math> in a standard graded domain <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>. As a consequence, we get a density function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{\\\\varepsilon (I)}$</annotation>\\n </semantics></math> for the epsilon multiplicity <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\varepsilon (I)$</annotation>\\n </semantics></math> of a homogeneous ideal <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>$I$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>. We further show that the function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace I_n\\\\rbrace }$</annotation>\\n </semantics></math> is continuous everywhere except possibly at one point, and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <mover>\\n <msup>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∼</mo>\\n </mover>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace \\\\widetilde{I^n}\\\\rbrace }$</annotation>\\n </semantics></math> is a continuous function everywhere and is continuously differentiable except possibly at one point. As a corollary, the epsilon density function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{\\\\varepsilon (I)}$</annotation>\\n </semantics></math> is a compactly supported continuous function on <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> except at one point, such that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>∫</mo>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mo>⩾</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </msub>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mi>ε</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\int _{\\\\mathbb {R}_{\\\\geqslant 0}} f_{\\\\varepsilon (I)} = \\\\varepsilon (I)$</annotation>\\n </semantics></math>. All the three functions <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <msup>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace I^n\\\\rbrace }$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>{</mo>\\n <mover>\\n <msup>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>∼</mo>\\n </mover>\\n <mo>}</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{A,\\\\lbrace \\\\widetilde{I^n}\\\\rbrace }$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <annotation>$f_{\\\\varepsilon (I)}$</annotation>\\n </semantics></math> remain invariant under passage to the integral closure of <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>$I$</annotation>\\n </semantics></math>. As a corollary of this theory, we observe that the ‘rescaled’ Hilbert–Samuel multiplicities of the diagonal subalgebras form a continuous family.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70155\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70155","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

代数不变量的密度函数是R $\mathbb {R}$上的可测量函数,它测量R $\mathbb {R}$ -尺度上的不变量。该函数携带了大量与不变量相关的信息,而无需寻找额外的数据。它被证明是一个有用的工具,由Trivedi [Trans]的第三位作者介绍。阿米尔。数学。Soc. 370 (2018), no。[12][8403-8428],研究了齐次m ${\bf m}$ -初等理想的特征p$ p$不变量的Hilbert-Kunz多重性。这里,我们构造密度函数,{in}$ f_{A,\ I_n\rbrace}$用于noether过滤{in}n∈n $\ rbrace I_n\rbrace _{n\in {\mathbb {n}}}$齐次理想和f A,{I n ~}$ f_{A,\lbrace \widetilde{I^n}\rbrace}$对于由A中齐次理想I$ I$的饱和幂给出的滤波标准分级域A$ A$因此,我们得到一个密度函数f ε (I)$ f_{\varepsilon (I)}$对于ε (I)$ \varepsilon (I)$齐次理想I$ I$在a $ a $中。我们进一步证明函数f A, {I n}$ f_{A,\ rbrace I_n\rbrace}$在任何地方都是连续的,除了有一点,和f A,{I n ~}$ f_{A,\ rbrace \ widdetilde {I^n}\rbrace}$处处都是连续函数并且除了可能在一点上是连续可微的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Density functions for epsilon multiplicity and families of ideals

Density functions for epsilon multiplicity and families of ideals

A density function for an algebraic invariant is a measurable function on R $\mathbb {R}$ which measures the invariant on an R $\mathbb {R}$ -scale. This function carries a lot more information related to the invariant without seeking extra data. It has turned out to be a useful tool, which was introduced by the third author in Trivedi [Trans. Amer. Math. Soc. 370 (2018), no. 12, 8403–8428], to study the characteristic p $p$ invariant, namely Hilbert–Kunz multiplicity of a homogeneous m ${\bf m}$ -primary ideal. Here, we construct density functions f A , { I n } $f_{A,\lbrace I_n\rbrace }$ for a Noetherian filtration { I n } n N $\lbrace I_n\rbrace _{n\in {\mathbb {N}}}$ of homogeneous ideals and f A , { I n } $f_{A,\lbrace \widetilde{I^n}\rbrace }$ for a filtration given by the saturated powers of a homogeneous ideal I $I$ in a standard graded domain A $A$ . As a consequence, we get a density function f ε ( I ) $f_{\varepsilon (I)}$ for the epsilon multiplicity ε ( I ) $\varepsilon (I)$ of a homogeneous ideal I $I$ in A $A$ . We further show that the function f A , { I n } $f_{A,\lbrace I_n\rbrace }$ is continuous everywhere except possibly at one point, and f A , { I n } $f_{A,\lbrace \widetilde{I^n}\rbrace }$ is a continuous function everywhere and is continuously differentiable except possibly at one point. As a corollary, the epsilon density function f ε ( I ) $f_{\varepsilon (I)}$ is a compactly supported continuous function on R $\mathbb {R}$ except at one point, such that R 0 f ε ( I ) = ε ( I ) $\int _{\mathbb {R}_{\geqslant 0}} f_{\varepsilon (I)} = \varepsilon (I)$ . All the three functions f A , { I n } $f_{A,\lbrace I^n\rbrace }$ , f A , { I n } $f_{A,\lbrace \widetilde{I^n}\rbrace }$ and f ε ( I ) $f_{\varepsilon (I)}$ remain invariant under passage to the integral closure of I $I$ . As a corollary of this theory, we observe that the ‘rescaled’ Hilbert–Samuel multiplicities of the diagonal subalgebras form a continuous family.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信