a2 $A_2$ Rogers-Ramanujan三阶二分恒等式的一个例子

IF 1 2区 数学 Q1 MATHEMATICS
Shunsuke Tsuchioka
{"title":"a2 $A_2$ Rogers-Ramanujan三阶二分恒等式的一个例子","authors":"Shunsuke Tsuchioka","doi":"10.1112/jlms.70152","DOIUrl":null,"url":null,"abstract":"<p>We give manifestly positive Andrews–Gordon type series for the level 3 standard modules of the affine Lie algebra of type <span></span><math>\n <semantics>\n <msubsup>\n <mi>A</mi>\n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <annotation>$A^{(1)}_2$</annotation>\n </semantics></math>. We also give corresponding bipartition identities, which have representation theoretic interpretations via the vertex operators. Our proof is based on the Borodin product formula, the Corteel–Welsh recursion for the cylindric partitions, a <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>-version of Sister Celine's technique and a generalization of Andrews' partition ideals by finite automata due to Takigiku and the author.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An example of \\n \\n \\n A\\n 2\\n \\n $A_2$\\n Rogers–Ramanujan bipartition identities of level 3\",\"authors\":\"Shunsuke Tsuchioka\",\"doi\":\"10.1112/jlms.70152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give manifestly positive Andrews–Gordon type series for the level 3 standard modules of the affine Lie algebra of type <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>A</mi>\\n <mn>2</mn>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msubsup>\\n <annotation>$A^{(1)}_2$</annotation>\\n </semantics></math>. We also give corresponding bipartition identities, which have representation theoretic interpretations via the vertex operators. Our proof is based on the Borodin product formula, the Corteel–Welsh recursion for the cylindric partitions, a <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>-version of Sister Celine's technique and a generalization of Andrews' partition ideals by finite automata due to Takigiku and the author.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70152\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70152","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了A 2 (1) $A^{(1)}_2$仿射李代数的三级标准模的明显正Andrews-Gordon型级数。给出了相应的二分恒等式,并通过顶点算子给出了相应的表示理论解释。我们的证明是基于Borodin积公式,圆柱分区的Corteel-Welsh递归,Sister Celine技术的q$ q$版本,以及Takigiku和作者的有限自动机对Andrews分区理想的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An example of A 2 $A_2$ Rogers–Ramanujan bipartition identities of level 3

We give manifestly positive Andrews–Gordon type series for the level 3 standard modules of the affine Lie algebra of type A 2 ( 1 ) $A^{(1)}_2$ . We also give corresponding bipartition identities, which have representation theoretic interpretations via the vertex operators. Our proof is based on the Borodin product formula, the Corteel–Welsh recursion for the cylindric partitions, a q $q$ -version of Sister Celine's technique and a generalization of Andrews' partition ideals by finite automata due to Takigiku and the author.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信