Xu Chao, Imran Hameed, David Navarro-Alarcon, Xingjian Jing
{"title":"以性能为导向理解和设计机器人蝌蚪:更低的能源成本、更高的速度","authors":"Xu Chao, Imran Hameed, David Navarro-Alarcon, Xingjian Jing","doi":"10.1002/rob.22452","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A compliant plate driven by an active joint is frequently employed as a fin to improve swimming efficiency due to its continuous and compliant kinematics. However, very few studies have focused on the performance-oriented design of multijoint mechanisms enhanced with flexible fins, particularly regarding critical design factors such as the active-joint ratio and dimension-related stiffness distribution of the fin. To this aim, we developed a robotic tadpole by integrating a multijoint mechanism with a flexible fin and conduct a comprehensive investigation of its swimming performance with different tail configurations. A dynamic model with identified hydrodynamic parameters was established to predict propulsive performance. Numerous simulations and experiments were conducted to explore the impact of the active-joint ratio and the dimension-related stiffness distribution of the fin. The results reveal that (a) tails with different active-joint ratios achieve their best performance at a small phase difference, while tails with a larger active-joint ratio tend to perform worse than those with a smaller active-joint ratio when a larger phase difference is used; (b) the optimal active-joint ratio enables the robot to achieve superior performance in terms of swimming velocity and energy efficiency; and (c) with the same surface area, a longer fin with a wide leading edge and a narrow trailing edge can achieve higher swimming speeds with lower energy consumption. This work presents novel and in-depth insights into the design of bio-inspired underwater robots with compliant propulsion mechanisms.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 3","pages":"607-624"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance-Oriented Understanding and Design of a Robotic Tadpole: Lower Energy Cost, Higher Speed\",\"authors\":\"Xu Chao, Imran Hameed, David Navarro-Alarcon, Xingjian Jing\",\"doi\":\"10.1002/rob.22452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A compliant plate driven by an active joint is frequently employed as a fin to improve swimming efficiency due to its continuous and compliant kinematics. However, very few studies have focused on the performance-oriented design of multijoint mechanisms enhanced with flexible fins, particularly regarding critical design factors such as the active-joint ratio and dimension-related stiffness distribution of the fin. To this aim, we developed a robotic tadpole by integrating a multijoint mechanism with a flexible fin and conduct a comprehensive investigation of its swimming performance with different tail configurations. A dynamic model with identified hydrodynamic parameters was established to predict propulsive performance. Numerous simulations and experiments were conducted to explore the impact of the active-joint ratio and the dimension-related stiffness distribution of the fin. The results reveal that (a) tails with different active-joint ratios achieve their best performance at a small phase difference, while tails with a larger active-joint ratio tend to perform worse than those with a smaller active-joint ratio when a larger phase difference is used; (b) the optimal active-joint ratio enables the robot to achieve superior performance in terms of swimming velocity and energy efficiency; and (c) with the same surface area, a longer fin with a wide leading edge and a narrow trailing edge can achieve higher swimming speeds with lower energy consumption. This work presents novel and in-depth insights into the design of bio-inspired underwater robots with compliant propulsion mechanisms.</p>\\n </div>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"42 3\",\"pages\":\"607-624\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22452\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22452","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Performance-Oriented Understanding and Design of a Robotic Tadpole: Lower Energy Cost, Higher Speed
A compliant plate driven by an active joint is frequently employed as a fin to improve swimming efficiency due to its continuous and compliant kinematics. However, very few studies have focused on the performance-oriented design of multijoint mechanisms enhanced with flexible fins, particularly regarding critical design factors such as the active-joint ratio and dimension-related stiffness distribution of the fin. To this aim, we developed a robotic tadpole by integrating a multijoint mechanism with a flexible fin and conduct a comprehensive investigation of its swimming performance with different tail configurations. A dynamic model with identified hydrodynamic parameters was established to predict propulsive performance. Numerous simulations and experiments were conducted to explore the impact of the active-joint ratio and the dimension-related stiffness distribution of the fin. The results reveal that (a) tails with different active-joint ratios achieve their best performance at a small phase difference, while tails with a larger active-joint ratio tend to perform worse than those with a smaller active-joint ratio when a larger phase difference is used; (b) the optimal active-joint ratio enables the robot to achieve superior performance in terms of swimming velocity and energy efficiency; and (c) with the same surface area, a longer fin with a wide leading edge and a narrow trailing edge can achieve higher swimming speeds with lower energy consumption. This work presents novel and in-depth insights into the design of bio-inspired underwater robots with compliant propulsion mechanisms.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.