Hatu Gmedhin, Sebastian Schaefer, Nathaniel Corrigan, Peifeng Wu, Zi Gu, Megan D. Lenardon, Cyrille Boyer
{"title":"限定嵌段序列三元共聚物对抗真菌活性和生物相容性的影响","authors":"Hatu Gmedhin, Sebastian Schaefer, Nathaniel Corrigan, Peifeng Wu, Zi Gu, Megan D. Lenardon, Cyrille Boyer","doi":"10.1002/mabi.202400429","DOIUrl":null,"url":null,"abstract":"<p>Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells. Toward addressing this, synthetic polymers designed to mimic host defense peptides are promising new candidates for combating fungal infections. This study investigates well-defined multiblock terpolymers with specific arrangements of cationic, hydrophobic, and hydrophilic groups, as potential antifungal agents. The block sequence in these copolymers significantly impacts their minimum inhibition concentration (MIC) against <i>Candida albicans</i> and biocompatibility. Furthermore, compared to their statistical counterparts, these block polymers exhibit lower MIC values in certain instances. Notably, triblock terpolymers containing a central hydrophobic block present an enhanced antifungal efficacy and biocompatibility. These findings highlight the potential of block sequence-controlled polymers as a versatile platform for developing customized and targeted antifungal therapies.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"25 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Defined Block Sequence Terpolymers on Antifungal Activity and Biocompatibility\",\"authors\":\"Hatu Gmedhin, Sebastian Schaefer, Nathaniel Corrigan, Peifeng Wu, Zi Gu, Megan D. Lenardon, Cyrille Boyer\",\"doi\":\"10.1002/mabi.202400429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells. Toward addressing this, synthetic polymers designed to mimic host defense peptides are promising new candidates for combating fungal infections. This study investigates well-defined multiblock terpolymers with specific arrangements of cationic, hydrophobic, and hydrophilic groups, as potential antifungal agents. The block sequence in these copolymers significantly impacts their minimum inhibition concentration (MIC) against <i>Candida albicans</i> and biocompatibility. Furthermore, compared to their statistical counterparts, these block polymers exhibit lower MIC values in certain instances. Notably, triblock terpolymers containing a central hydrophobic block present an enhanced antifungal efficacy and biocompatibility. These findings highlight the potential of block sequence-controlled polymers as a versatile platform for developing customized and targeted antifungal therapies.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400429\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400429","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of Defined Block Sequence Terpolymers on Antifungal Activity and Biocompatibility
Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells. Toward addressing this, synthetic polymers designed to mimic host defense peptides are promising new candidates for combating fungal infections. This study investigates well-defined multiblock terpolymers with specific arrangements of cationic, hydrophobic, and hydrophilic groups, as potential antifungal agents. The block sequence in these copolymers significantly impacts their minimum inhibition concentration (MIC) against Candida albicans and biocompatibility. Furthermore, compared to their statistical counterparts, these block polymers exhibit lower MIC values in certain instances. Notably, triblock terpolymers containing a central hydrophobic block present an enhanced antifungal efficacy and biocompatibility. These findings highlight the potential of block sequence-controlled polymers as a versatile platform for developing customized and targeted antifungal therapies.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.