通过基于等离子体的回收利用实现可持续的氢经济和碳经济

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Guoxing Chen, Anke Weidenkaff
{"title":"通过基于等离子体的回收利用实现可持续的氢经济和碳经济","authors":"Guoxing Chen,&nbsp;Anke Weidenkaff","doi":"10.1007/s11705-025-2544-3","DOIUrl":null,"url":null,"abstract":"<div><p>The transition to sustainable hydrogen and carbon economies is essential for addressing critical global issues such as climate change, resource depletion, and waste management. A vital strategy for low-carbon sustainability in the energy and chemical sectors is the chemical conversion of greenhouse gas into fuels and platform chemicals. Effective waste management, including waste-to-energy conversion and recycling, plays a crucial role in reducing emissions and promoting a circular economy. A key aspect of this transition is the development of innovative technologies that can transform waste into valuable resources while minimizing environmental impacts. Plasma-based recycling presents a promising solution, offering remarkable versatility for applications like waste upcycling and greenhouse gas conversion. These processes play a crucial role in advancing the development of sustainable carbon and hydrogen economies.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward sustainable hydrogen and carbon economies through plasma-based recycling\",\"authors\":\"Guoxing Chen,&nbsp;Anke Weidenkaff\",\"doi\":\"10.1007/s11705-025-2544-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The transition to sustainable hydrogen and carbon economies is essential for addressing critical global issues such as climate change, resource depletion, and waste management. A vital strategy for low-carbon sustainability in the energy and chemical sectors is the chemical conversion of greenhouse gas into fuels and platform chemicals. Effective waste management, including waste-to-energy conversion and recycling, plays a crucial role in reducing emissions and promoting a circular economy. A key aspect of this transition is the development of innovative technologies that can transform waste into valuable resources while minimizing environmental impacts. Plasma-based recycling presents a promising solution, offering remarkable versatility for applications like waste upcycling and greenhouse gas conversion. These processes play a crucial role in advancing the development of sustainable carbon and hydrogen economies.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2544-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2544-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

向可持续的氢和碳经济过渡对于解决气候变化、资源枯竭和废物管理等重大全球问题至关重要。能源和化工行业实现低碳可持续发展的一个重要战略是将温室气体化学转化为燃料和平台化学品。有效的废物管理,包括废物转化为能源和回收利用,在减少排放和促进循环经济方面发挥着至关重要的作用。这一转变的一个关键方面是发展创新技术,将废物转化为宝贵的资源,同时尽量减少对环境的影响。基于等离子体的回收是一种很有前途的解决方案,为废物升级回收和温室气体转化等应用提供了显著的多功能性。这些过程在推动可持续碳和氢经济的发展方面发挥着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward sustainable hydrogen and carbon economies through plasma-based recycling

The transition to sustainable hydrogen and carbon economies is essential for addressing critical global issues such as climate change, resource depletion, and waste management. A vital strategy for low-carbon sustainability in the energy and chemical sectors is the chemical conversion of greenhouse gas into fuels and platform chemicals. Effective waste management, including waste-to-energy conversion and recycling, plays a crucial role in reducing emissions and promoting a circular economy. A key aspect of this transition is the development of innovative technologies that can transform waste into valuable resources while minimizing environmental impacts. Plasma-based recycling presents a promising solution, offering remarkable versatility for applications like waste upcycling and greenhouse gas conversion. These processes play a crucial role in advancing the development of sustainable carbon and hydrogen economies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信