{"title":"非应用阶段涉及锂离子电池的事故:事件特征、环境影响和应对策略","authors":"Ziyu Wang, Guohe Huang, Zhikun Chen, Chunjiang An","doi":"10.1186/s13065-025-01445-x","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid growth of electric vehicle adoption, the demand for lithium-ion batteries has surged, highlighting the importance of understanding the associated risks, particularly in non-application stages such as transportation, storage, assembly, and disposal. This review explores the types and causes of lithium-ion battery accidents, categorizing them into leakage, fire, and explosion, often resulting from electrical, thermal, and mechanical abuses. It examines the environmental impacts of such incidents, including the release of toxic substances that threaten public health and ecological systems. The research also outlines the need for effective risk assessment methods and compliance with safety standards. Furthermore, it evaluates current emergency response strategies, advocating for a unified approach to managing these incidents. By delving into the complexities of lithium-ion battery safety, this study aims to contribute to improved practices and regulatory frameworks, ultimately enhancing related accident responses.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01445-x","citationCount":"0","resultStr":"{\"title\":\"Accidents involving lithium-ion batteries in non-application stages: incident characteristics, environmental impacts, and response strategies\",\"authors\":\"Ziyu Wang, Guohe Huang, Zhikun Chen, Chunjiang An\",\"doi\":\"10.1186/s13065-025-01445-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid growth of electric vehicle adoption, the demand for lithium-ion batteries has surged, highlighting the importance of understanding the associated risks, particularly in non-application stages such as transportation, storage, assembly, and disposal. This review explores the types and causes of lithium-ion battery accidents, categorizing them into leakage, fire, and explosion, often resulting from electrical, thermal, and mechanical abuses. It examines the environmental impacts of such incidents, including the release of toxic substances that threaten public health and ecological systems. The research also outlines the need for effective risk assessment methods and compliance with safety standards. Furthermore, it evaluates current emergency response strategies, advocating for a unified approach to managing these incidents. By delving into the complexities of lithium-ion battery safety, this study aims to contribute to improved practices and regulatory frameworks, ultimately enhancing related accident responses.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01445-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01445-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01445-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Accidents involving lithium-ion batteries in non-application stages: incident characteristics, environmental impacts, and response strategies
With the rapid growth of electric vehicle adoption, the demand for lithium-ion batteries has surged, highlighting the importance of understanding the associated risks, particularly in non-application stages such as transportation, storage, assembly, and disposal. This review explores the types and causes of lithium-ion battery accidents, categorizing them into leakage, fire, and explosion, often resulting from electrical, thermal, and mechanical abuses. It examines the environmental impacts of such incidents, including the release of toxic substances that threaten public health and ecological systems. The research also outlines the need for effective risk assessment methods and compliance with safety standards. Furthermore, it evaluates current emergency response strategies, advocating for a unified approach to managing these incidents. By delving into the complexities of lithium-ion battery safety, this study aims to contribute to improved practices and regulatory frameworks, ultimately enhancing related accident responses.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.