非应用阶段涉及锂离子电池的事故:事件特征、环境影响和应对策略

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ziyu Wang, Guohe Huang, Zhikun Chen, Chunjiang An
{"title":"非应用阶段涉及锂离子电池的事故:事件特征、环境影响和应对策略","authors":"Ziyu Wang,&nbsp;Guohe Huang,&nbsp;Zhikun Chen,&nbsp;Chunjiang An","doi":"10.1186/s13065-025-01445-x","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid growth of electric vehicle adoption, the demand for lithium-ion batteries has surged, highlighting the importance of understanding the associated risks, particularly in non-application stages such as transportation, storage, assembly, and disposal. This review explores the types and causes of lithium-ion battery accidents, categorizing them into leakage, fire, and explosion, often resulting from electrical, thermal, and mechanical abuses. It examines the environmental impacts of such incidents, including the release of toxic substances that threaten public health and ecological systems. The research also outlines the need for effective risk assessment methods and compliance with safety standards. Furthermore, it evaluates current emergency response strategies, advocating for a unified approach to managing these incidents. By delving into the complexities of lithium-ion battery safety, this study aims to contribute to improved practices and regulatory frameworks, ultimately enhancing related accident responses.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01445-x","citationCount":"0","resultStr":"{\"title\":\"Accidents involving lithium-ion batteries in non-application stages: incident characteristics, environmental impacts, and response strategies\",\"authors\":\"Ziyu Wang,&nbsp;Guohe Huang,&nbsp;Zhikun Chen,&nbsp;Chunjiang An\",\"doi\":\"10.1186/s13065-025-01445-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid growth of electric vehicle adoption, the demand for lithium-ion batteries has surged, highlighting the importance of understanding the associated risks, particularly in non-application stages such as transportation, storage, assembly, and disposal. This review explores the types and causes of lithium-ion battery accidents, categorizing them into leakage, fire, and explosion, often resulting from electrical, thermal, and mechanical abuses. It examines the environmental impacts of such incidents, including the release of toxic substances that threaten public health and ecological systems. The research also outlines the need for effective risk assessment methods and compliance with safety standards. Furthermore, it evaluates current emergency response strategies, advocating for a unified approach to managing these incidents. By delving into the complexities of lithium-ion battery safety, this study aims to contribute to improved practices and regulatory frameworks, ultimately enhancing related accident responses.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01445-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01445-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01445-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着电动汽车普及率的快速增长,对锂离子电池的需求激增,这凸显了了解相关风险的重要性,特别是在运输、储存、组装和处置等非应用阶段。本文探讨了锂离子电池事故的类型和原因,将其分为泄漏、火灾和爆炸,通常由电气、热和机械滥用引起。它审查这类事件对环境的影响,包括释放威胁公众健康和生态系统的有毒物质。该研究还概述了有效的风险评估方法和遵守安全标准的必要性。此外,它还评估了当前的应急战略,倡导采用统一的办法来管理这些事件。通过深入研究锂离子电池安全的复杂性,本研究旨在为改进实践和监管框架做出贡献,最终提高相关事故的响应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accidents involving lithium-ion batteries in non-application stages: incident characteristics, environmental impacts, and response strategies

With the rapid growth of electric vehicle adoption, the demand for lithium-ion batteries has surged, highlighting the importance of understanding the associated risks, particularly in non-application stages such as transportation, storage, assembly, and disposal. This review explores the types and causes of lithium-ion battery accidents, categorizing them into leakage, fire, and explosion, often resulting from electrical, thermal, and mechanical abuses. It examines the environmental impacts of such incidents, including the release of toxic substances that threaten public health and ecological systems. The research also outlines the need for effective risk assessment methods and compliance with safety standards. Furthermore, it evaluates current emergency response strategies, advocating for a unified approach to managing these incidents. By delving into the complexities of lithium-ion battery safety, this study aims to contribute to improved practices and regulatory frameworks, ultimately enhancing related accident responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信