{"title":"用于神经形态计算的低功耗 Memristor:从材料到应用","authors":"Zhipeng Xia, Xiao Sun, Zhenlong Wang, Jialin Meng, Boyan Jin, Tianyu Wang","doi":"10.1007/s40820-025-01705-4","DOIUrl":null,"url":null,"abstract":"<div><p>As an emerging memory device, memristor shows great potential in neuromorphic computing applications due to its advantage of low power consumption. This review paper focuses on the application of low-power-based memristors in various aspects. The concept and structure of memristor devices are introduced. The selection of functional materials for low-power memristors is discussed, including ion transport materials, phase change materials, magnetoresistive materials, and ferroelectric materials. Two common types of memristor arrays, 1T1R and 1S1R crossbar arrays are introduced, and physical diagrams of edge computing memristor chips are discussed in detail. Potential applications of low-power memristors in advanced multi-value storage, digital logic gates, and analogue neuromorphic computing are summarized. Furthermore, the future challenges and outlook of neuromorphic computing based on memristor are deeply discussed.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01705-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Low-Power Memristor for Neuromorphic Computing: From Materials to Applications\",\"authors\":\"Zhipeng Xia, Xiao Sun, Zhenlong Wang, Jialin Meng, Boyan Jin, Tianyu Wang\",\"doi\":\"10.1007/s40820-025-01705-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As an emerging memory device, memristor shows great potential in neuromorphic computing applications due to its advantage of low power consumption. This review paper focuses on the application of low-power-based memristors in various aspects. The concept and structure of memristor devices are introduced. The selection of functional materials for low-power memristors is discussed, including ion transport materials, phase change materials, magnetoresistive materials, and ferroelectric materials. Two common types of memristor arrays, 1T1R and 1S1R crossbar arrays are introduced, and physical diagrams of edge computing memristor chips are discussed in detail. Potential applications of low-power memristors in advanced multi-value storage, digital logic gates, and analogue neuromorphic computing are summarized. Furthermore, the future challenges and outlook of neuromorphic computing based on memristor are deeply discussed.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01705-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01705-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01705-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Low-Power Memristor for Neuromorphic Computing: From Materials to Applications
As an emerging memory device, memristor shows great potential in neuromorphic computing applications due to its advantage of low power consumption. This review paper focuses on the application of low-power-based memristors in various aspects. The concept and structure of memristor devices are introduced. The selection of functional materials for low-power memristors is discussed, including ion transport materials, phase change materials, magnetoresistive materials, and ferroelectric materials. Two common types of memristor arrays, 1T1R and 1S1R crossbar arrays are introduced, and physical diagrams of edge computing memristor chips are discussed in detail. Potential applications of low-power memristors in advanced multi-value storage, digital logic gates, and analogue neuromorphic computing are summarized. Furthermore, the future challenges and outlook of neuromorphic computing based on memristor are deeply discussed.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.