基于发光纳米粒子和微流控生物芯片以及机器视觉算法分析的智能护理点生物传感平台

IF 26.6 1区 材料科学 Q1 Engineering
Yuan Liu, Xinyue Lao, Man-Chung Wong, Menglin Song, Yifei Zhao, Yingjin Ma, Qianqian Bai, Jianhua Hao
{"title":"基于发光纳米粒子和微流控生物芯片以及机器视觉算法分析的智能护理点生物传感平台","authors":"Yuan Liu,&nbsp;Xinyue Lao,&nbsp;Man-Chung Wong,&nbsp;Menglin Song,&nbsp;Yifei Zhao,&nbsp;Yingjin Ma,&nbsp;Qianqian Bai,&nbsp;Jianhua Hao","doi":"10.1007/s40820-025-01745-w","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>A novel intelligent biosensing platform consisting of quantum dots luminescence and biochip with machine vision algorithm is proposed for point-of-care carcinoembryonic antigen (CEA) protein diagnostics. </p>\n </li>\n <li>\n <p>The designed diagnostic platform possesses outstanding detection limitation of approximately 0.021 ng mL<sup>−1</sup> of CEA concentration compared with some commercial biodetection devices of lateral flow assay strips.\n</p>\n </li>\n <li>\n <p>The utilization of machine vision algorithm improves the detection features of portability and integration, which expands the potential of point-of-care biosensing applications.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01745-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Intelligent Point-of-Care Biosensing Platform Based on Luminescent Nanoparticles and Microfluidic Biochip with Machine Vision Algorithm Analysis\",\"authors\":\"Yuan Liu,&nbsp;Xinyue Lao,&nbsp;Man-Chung Wong,&nbsp;Menglin Song,&nbsp;Yifei Zhao,&nbsp;Yingjin Ma,&nbsp;Qianqian Bai,&nbsp;Jianhua Hao\",\"doi\":\"10.1007/s40820-025-01745-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n \\n<ul>\\n <li>\\n <p>A novel intelligent biosensing platform consisting of quantum dots luminescence and biochip with machine vision algorithm is proposed for point-of-care carcinoembryonic antigen (CEA) protein diagnostics. </p>\\n </li>\\n <li>\\n <p>The designed diagnostic platform possesses outstanding detection limitation of approximately 0.021 ng mL<sup>−1</sup> of CEA concentration compared with some commercial biodetection devices of lateral flow assay strips.\\n</p>\\n </li>\\n <li>\\n <p>The utilization of machine vision algorithm improves the detection features of portability and integration, which expands the potential of point-of-care biosensing applications.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01745-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01745-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01745-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种由量子点发光和生物芯片结合机器视觉算法组成的新型智能生物传感平台,用于即时诊断癌胚抗原(CEA)蛋白。与一些商业生物检测设备的横向流动试验条相比,所设计的诊断平台具有突出的检测限,CEA浓度约为0.021 ng mL−1。机器视觉算法的应用提高了检测的便携性和集成性,扩大了即时生物传感应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Point-of-Care Biosensing Platform Based on Luminescent Nanoparticles and Microfluidic Biochip with Machine Vision Algorithm Analysis

Highlights

  • A novel intelligent biosensing platform consisting of quantum dots luminescence and biochip with machine vision algorithm is proposed for point-of-care carcinoembryonic antigen (CEA) protein diagnostics.

  • The designed diagnostic platform possesses outstanding detection limitation of approximately 0.021 ng mL−1 of CEA concentration compared with some commercial biodetection devices of lateral flow assay strips.

  • The utilization of machine vision algorithm improves the detection features of portability and integration, which expands the potential of point-of-care biosensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信