{"title":"水冷系统温度升高对粘土衬垫中污染物运移的影响:实验室和数值研究","authors":"Vihan Jayawardane , Emmanuella Stephanie Widjaja , Vivi Anggraini , Mehdi Mirzababaei","doi":"10.1016/j.jconhyd.2025.104572","DOIUrl":null,"url":null,"abstract":"<div><div>In municipal solid waste landfills (MSWL), the center and peripheral regions of the basal compacted clay liner (CCL) often experience steady elevated temperatures due to waste biodegradation and cyclic temperatures similar to the seasonal atmospheric temperature patterns, respectively. In the present study, the negative effects of cyclic elevated temperatures on the desiccation behaviour of a MSWL basal CCL was examined by subjecting CCL samples to multiple wet-dry cycles with different drying temperatures. It was observed that the extent of desiccation cracking experienced by the CCL rose as the drying temperature and number of wet-dry cycles increased. The present study also assessed the effect of different thermoplastic cooling pipes on the reduction of temperature rise and desiccation experienced by CCLs exposed to constant elevated temperatures (CETs). It was observed that the introduction of thermoplastic cooling pipes led to a significant attenuation of the final temperature (FT) and desiccation magnitude along the CCL depth in the face of all applied CETs, irrespective of the cooling pipe material employed. A comprehensively analysis of the final temperature distributions within the entire CCL, coolant and sand layer surrounding the cooling pipe was also carried out via the conduction of a numerical simulation. Overall, the present study revealed the adverse effects imposed by cyclic elevated temperatures on a CCL and the potential that thermoplastic cooling pipes possess to successfully reduce the temperature rise and desiccation experienced by a CCL in the face of different CETs.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"272 ","pages":"Article 104572"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of elevated temperature from water cooling system on contaminant transport in clay liners: A laboratory and numerical investigation\",\"authors\":\"Vihan Jayawardane , Emmanuella Stephanie Widjaja , Vivi Anggraini , Mehdi Mirzababaei\",\"doi\":\"10.1016/j.jconhyd.2025.104572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In municipal solid waste landfills (MSWL), the center and peripheral regions of the basal compacted clay liner (CCL) often experience steady elevated temperatures due to waste biodegradation and cyclic temperatures similar to the seasonal atmospheric temperature patterns, respectively. In the present study, the negative effects of cyclic elevated temperatures on the desiccation behaviour of a MSWL basal CCL was examined by subjecting CCL samples to multiple wet-dry cycles with different drying temperatures. It was observed that the extent of desiccation cracking experienced by the CCL rose as the drying temperature and number of wet-dry cycles increased. The present study also assessed the effect of different thermoplastic cooling pipes on the reduction of temperature rise and desiccation experienced by CCLs exposed to constant elevated temperatures (CETs). It was observed that the introduction of thermoplastic cooling pipes led to a significant attenuation of the final temperature (FT) and desiccation magnitude along the CCL depth in the face of all applied CETs, irrespective of the cooling pipe material employed. A comprehensively analysis of the final temperature distributions within the entire CCL, coolant and sand layer surrounding the cooling pipe was also carried out via the conduction of a numerical simulation. Overall, the present study revealed the adverse effects imposed by cyclic elevated temperatures on a CCL and the potential that thermoplastic cooling pipes possess to successfully reduce the temperature rise and desiccation experienced by a CCL in the face of different CETs.</div></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"272 \",\"pages\":\"Article 104572\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772225000774\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000774","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of elevated temperature from water cooling system on contaminant transport in clay liners: A laboratory and numerical investigation
In municipal solid waste landfills (MSWL), the center and peripheral regions of the basal compacted clay liner (CCL) often experience steady elevated temperatures due to waste biodegradation and cyclic temperatures similar to the seasonal atmospheric temperature patterns, respectively. In the present study, the negative effects of cyclic elevated temperatures on the desiccation behaviour of a MSWL basal CCL was examined by subjecting CCL samples to multiple wet-dry cycles with different drying temperatures. It was observed that the extent of desiccation cracking experienced by the CCL rose as the drying temperature and number of wet-dry cycles increased. The present study also assessed the effect of different thermoplastic cooling pipes on the reduction of temperature rise and desiccation experienced by CCLs exposed to constant elevated temperatures (CETs). It was observed that the introduction of thermoplastic cooling pipes led to a significant attenuation of the final temperature (FT) and desiccation magnitude along the CCL depth in the face of all applied CETs, irrespective of the cooling pipe material employed. A comprehensively analysis of the final temperature distributions within the entire CCL, coolant and sand layer surrounding the cooling pipe was also carried out via the conduction of a numerical simulation. Overall, the present study revealed the adverse effects imposed by cyclic elevated temperatures on a CCL and the potential that thermoplastic cooling pipes possess to successfully reduce the temperature rise and desiccation experienced by a CCL in the face of different CETs.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.