自治微分方程有界渐近解的存在性

IF 2.3 2区 数学 Q1 MATHEMATICS
Vu Trong Luong , William Barker , Nguyen Duc Huy , Nguyen Van Minh
{"title":"自治微分方程有界渐近解的存在性","authors":"Vu Trong Luong ,&nbsp;William Barker ,&nbsp;Nguyen Duc Huy ,&nbsp;Nguyen Van Minh","doi":"10.1016/j.jde.2025.113320","DOIUrl":null,"url":null,"abstract":"<div><div>We study the existence of bounded asymptotic mild solutions to evolution equations of the form <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>A</mi><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> in a Banach space <span><math><mi>X</mi></math></span>, where <em>A</em> generates an (analytic) <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup and <em>f</em> is bounded. We find spectral conditions on <em>A</em> and <em>f</em> for the existence and uniqueness of asymptotic mild solutions with the same “profile” as that of <em>f</em>. In the resonance case, a sufficient condition of Massera type theorem is found for the existence of bounded solutions with the same profile as <em>f</em>. The obtained results are stated in terms of spectral properties of <em>A</em> and <em>f</em>, and they are analogs of classical results of Katznelson-Tzafriri and Massera for the evolution equations on the half line. Applications from PDE are given.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"434 ","pages":"Article 113320"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of bounded asymptotic solutions of autonomous differential equations\",\"authors\":\"Vu Trong Luong ,&nbsp;William Barker ,&nbsp;Nguyen Duc Huy ,&nbsp;Nguyen Van Minh\",\"doi\":\"10.1016/j.jde.2025.113320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the existence of bounded asymptotic mild solutions to evolution equations of the form <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>A</mi><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> in a Banach space <span><math><mi>X</mi></math></span>, where <em>A</em> generates an (analytic) <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup and <em>f</em> is bounded. We find spectral conditions on <em>A</em> and <em>f</em> for the existence and uniqueness of asymptotic mild solutions with the same “profile” as that of <em>f</em>. In the resonance case, a sufficient condition of Massera type theorem is found for the existence of bounded solutions with the same profile as <em>f</em>. The obtained results are stated in terms of spectral properties of <em>A</em> and <em>f</em>, and they are analogs of classical results of Katznelson-Tzafriri and Massera for the evolution equations on the half line. Applications from PDE are given.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"434 \",\"pages\":\"Article 113320\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500347X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500347X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类演化方程u ' (t)=Au(t)+f(t),t≥0的有界渐近温和解在Banach空间X中的存在性,其中a生成一个(解析)c0半群,f有界。我们发现光谱条件和f温和解的存在唯一性渐近的“概要”一样,f。在共振情况下,发现Massera类型定理的充分条件有界解的存在性与相同的概要文件f。结果是表达的光谱特性和f,和他们是经典的模拟结果Katznelson-Tzafriri和Massera半直线上的演化方程。提供了PDE的申请。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of bounded asymptotic solutions of autonomous differential equations
We study the existence of bounded asymptotic mild solutions to evolution equations of the form u(t)=Au(t)+f(t),t0 in a Banach space X, where A generates an (analytic) C0-semigroup and f is bounded. We find spectral conditions on A and f for the existence and uniqueness of asymptotic mild solutions with the same “profile” as that of f. In the resonance case, a sufficient condition of Massera type theorem is found for the existence of bounded solutions with the same profile as f. The obtained results are stated in terms of spectral properties of A and f, and they are analogs of classical results of Katznelson-Tzafriri and Massera for the evolution equations on the half line. Applications from PDE are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信