基于人工智能的 RC 框架结构地震时程响应预测(考虑不同的结构参数

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
K. Ge , Y.T. Guo , C. Wang , Z.Z. Hu
{"title":"基于人工智能的 RC 框架结构地震时程响应预测(考虑不同的结构参数","authors":"K. Ge ,&nbsp;Y.T. Guo ,&nbsp;C. Wang ,&nbsp;Z.Z. Hu","doi":"10.1016/j.jobe.2025.112643","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an end-to-end framework for Intelligent Seismic Response Prediction, ISRPnet, is introduced. ISRPnet comprises a structural parameter module for discretizing reinforced concrete frame structures into a series of static features and an encoder-decoder architecture for encoding seismic loads and autoregressively predicting seismic responses. The model is trained on a data set of 16,544 cases generated through validated fibre-based finite element models. ISRPnet achieves promising performance on both frequent and rare earthquakes. ISRPnet rapidly and highly precisely predicts temporal responses for frequent earthquakes. The peak displacement predictions remain accurate for rare earthquakes. The superiority of the physical loss and the advantages of gated recurrent unit over long short-term memory are analysed in comparative experiments. Verification with unseen seismic waves beyond the training data shows the robust generalization and extrapolation capabilities of the framework. The proposed model accomplishes efficient surrogate computation of the full-process seismic response for a class of RC frame structures.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"106 ","pages":"Article 112643"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based prediction of seismic time-history responses of RC frame structures considering varied structural parameters\",\"authors\":\"K. Ge ,&nbsp;Y.T. Guo ,&nbsp;C. Wang ,&nbsp;Z.Z. Hu\",\"doi\":\"10.1016/j.jobe.2025.112643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, an end-to-end framework for Intelligent Seismic Response Prediction, ISRPnet, is introduced. ISRPnet comprises a structural parameter module for discretizing reinforced concrete frame structures into a series of static features and an encoder-decoder architecture for encoding seismic loads and autoregressively predicting seismic responses. The model is trained on a data set of 16,544 cases generated through validated fibre-based finite element models. ISRPnet achieves promising performance on both frequent and rare earthquakes. ISRPnet rapidly and highly precisely predicts temporal responses for frequent earthquakes. The peak displacement predictions remain accurate for rare earthquakes. The superiority of the physical loss and the advantages of gated recurrent unit over long short-term memory are analysed in comparative experiments. Verification with unseen seismic waves beyond the training data shows the robust generalization and extrapolation capabilities of the framework. The proposed model accomplishes efficient surrogate computation of the full-process seismic response for a class of RC frame structures.</div></div>\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":\"106 \",\"pages\":\"Article 112643\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352710225008800\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225008800","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一个端到端的智能地震响应预测框架——ISRPnet。ISRPnet包括一个结构参数模块,用于将钢筋混凝土框架结构离散为一系列静态特征,以及一个编码器-解码器架构,用于编码地震荷载并自回归预测地震反应。该模型是在经过验证的基于纤维的有限元模型生成的16,544个案例的数据集上训练的。ISRPnet在频繁地震和罕见地震上都有很好的表现。ISRPnet快速、高精度地预测频繁地震的时间反应。对罕见地震的峰值位移预测仍然是准确的。对比实验分析了物理损耗的优越性和门控循环单元相对于长短期记忆的优势。训练数据之外的未见地震波验证显示了该框架的鲁棒泛化和外推能力。该模型实现了一类钢筋混凝土框架结构全过程地震反应的有效替代计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-based prediction of seismic time-history responses of RC frame structures considering varied structural parameters
In this paper, an end-to-end framework for Intelligent Seismic Response Prediction, ISRPnet, is introduced. ISRPnet comprises a structural parameter module for discretizing reinforced concrete frame structures into a series of static features and an encoder-decoder architecture for encoding seismic loads and autoregressively predicting seismic responses. The model is trained on a data set of 16,544 cases generated through validated fibre-based finite element models. ISRPnet achieves promising performance on both frequent and rare earthquakes. ISRPnet rapidly and highly precisely predicts temporal responses for frequent earthquakes. The peak displacement predictions remain accurate for rare earthquakes. The superiority of the physical loss and the advantages of gated recurrent unit over long short-term memory are analysed in comparative experiments. Verification with unseen seismic waves beyond the training data shows the robust generalization and extrapolation capabilities of the framework. The proposed model accomplishes efficient surrogate computation of the full-process seismic response for a class of RC frame structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信