Yifan Li , Tianyu Wang , Congzhe Zhu , Zhipeng Wang , Junlan Yang , Bin Yang
{"title":"多孔结构对开口微通道-鳍片组合式散热器热水力特性的影响","authors":"Yifan Li , Tianyu Wang , Congzhe Zhu , Zhipeng Wang , Junlan Yang , Bin Yang","doi":"10.1016/j.ijthermalsci.2025.109933","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of the computing power of data centers, has resulted in a sharp increase of heat generation on electronic chips. The traditional heat sinks cannot remove the ultra-high heat flux effectively. Novel heat sinks with porous structures are developed to cope with serious overtemperature issues to ensure the safe operation of electronic chips. The effect of the position, porosity, and permeability of porous configurations on the thermal and hydrodynamic features is explored and compared with the traditional smooth microchannel (SM) and the open microchannel with solid pin-fins (OM-SPF). Results manifest that the porous structure is conducive to increasing heat transfer area and enlarging flow space. However, its arrangement significantly influences the temperature control ability and thermal transport rate. For the open microchannel with porous pin-fins (OM-PPF), the friction loss is reduced by 57.1 %, but the perturbance effect is much weaker than the solid counterpart. For the open microchannel with porous sidewall ribs (OM-PSR), the Nusselt number is increased by 2.7, 2.2, and 1.6 times, the peak temperature is reduced by 9.5 °C, 5.6 °C, and 2.5 °C compared to the SM, OM-PPF, and OM-SPF at Re = 631. The friction factor of OM-PSR is 55.1 % smaller than the OM-SPF at Re = 131. The synergy effect of the heat transport enhancement by central solid fins and the drag reduction by porous sidewalls in OM-PSR brings a superior overall capability with a total performance index (<em>TPI</em>) of 2.0 at Re = 329. The small porosity and large permeability of porous sidewalls result in a higher Nusselt number, lower friction factor, and better overall efficiency. The OM-PSR with porosity of 0.2 and permeability of 1 × 10<sup>−8</sup> m<sup>2</sup> obtains the highest <em>TPI</em> of 4.63 at Re = 131, which helps to balance the heat dissipation and pump consumption, demonstrates a great potential for improving the energy efficiency of the cooling system in high-power data centers.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109933"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of porous structure on the thermal and hydraulic features of combined heat sinks with open microchannels and pin-fins\",\"authors\":\"Yifan Li , Tianyu Wang , Congzhe Zhu , Zhipeng Wang , Junlan Yang , Bin Yang\",\"doi\":\"10.1016/j.ijthermalsci.2025.109933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid development of the computing power of data centers, has resulted in a sharp increase of heat generation on electronic chips. The traditional heat sinks cannot remove the ultra-high heat flux effectively. Novel heat sinks with porous structures are developed to cope with serious overtemperature issues to ensure the safe operation of electronic chips. The effect of the position, porosity, and permeability of porous configurations on the thermal and hydrodynamic features is explored and compared with the traditional smooth microchannel (SM) and the open microchannel with solid pin-fins (OM-SPF). Results manifest that the porous structure is conducive to increasing heat transfer area and enlarging flow space. However, its arrangement significantly influences the temperature control ability and thermal transport rate. For the open microchannel with porous pin-fins (OM-PPF), the friction loss is reduced by 57.1 %, but the perturbance effect is much weaker than the solid counterpart. For the open microchannel with porous sidewall ribs (OM-PSR), the Nusselt number is increased by 2.7, 2.2, and 1.6 times, the peak temperature is reduced by 9.5 °C, 5.6 °C, and 2.5 °C compared to the SM, OM-PPF, and OM-SPF at Re = 631. The friction factor of OM-PSR is 55.1 % smaller than the OM-SPF at Re = 131. The synergy effect of the heat transport enhancement by central solid fins and the drag reduction by porous sidewalls in OM-PSR brings a superior overall capability with a total performance index (<em>TPI</em>) of 2.0 at Re = 329. The small porosity and large permeability of porous sidewalls result in a higher Nusselt number, lower friction factor, and better overall efficiency. The OM-PSR with porosity of 0.2 and permeability of 1 × 10<sup>−8</sup> m<sup>2</sup> obtains the highest <em>TPI</em> of 4.63 at Re = 131, which helps to balance the heat dissipation and pump consumption, demonstrates a great potential for improving the energy efficiency of the cooling system in high-power data centers.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"214 \",\"pages\":\"Article 109933\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129007292500256X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292500256X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of porous structure on the thermal and hydraulic features of combined heat sinks with open microchannels and pin-fins
The rapid development of the computing power of data centers, has resulted in a sharp increase of heat generation on electronic chips. The traditional heat sinks cannot remove the ultra-high heat flux effectively. Novel heat sinks with porous structures are developed to cope with serious overtemperature issues to ensure the safe operation of electronic chips. The effect of the position, porosity, and permeability of porous configurations on the thermal and hydrodynamic features is explored and compared with the traditional smooth microchannel (SM) and the open microchannel with solid pin-fins (OM-SPF). Results manifest that the porous structure is conducive to increasing heat transfer area and enlarging flow space. However, its arrangement significantly influences the temperature control ability and thermal transport rate. For the open microchannel with porous pin-fins (OM-PPF), the friction loss is reduced by 57.1 %, but the perturbance effect is much weaker than the solid counterpart. For the open microchannel with porous sidewall ribs (OM-PSR), the Nusselt number is increased by 2.7, 2.2, and 1.6 times, the peak temperature is reduced by 9.5 °C, 5.6 °C, and 2.5 °C compared to the SM, OM-PPF, and OM-SPF at Re = 631. The friction factor of OM-PSR is 55.1 % smaller than the OM-SPF at Re = 131. The synergy effect of the heat transport enhancement by central solid fins and the drag reduction by porous sidewalls in OM-PSR brings a superior overall capability with a total performance index (TPI) of 2.0 at Re = 329. The small porosity and large permeability of porous sidewalls result in a higher Nusselt number, lower friction factor, and better overall efficiency. The OM-PSR with porosity of 0.2 and permeability of 1 × 10−8 m2 obtains the highest TPI of 4.63 at Re = 131, which helps to balance the heat dissipation and pump consumption, demonstrates a great potential for improving the energy efficiency of the cooling system in high-power data centers.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.