{"title":"计算 b 兼容图的流量","authors":"Houshan Fu , Xiangyu Ren , Suijie Wang","doi":"10.1016/j.aam.2025.102901","DOIUrl":null,"url":null,"abstract":"<div><div>Kochol introduced the assigning polynomial <span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo></math></span> to count nowhere-zero <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-flows of a graph <em>G</em>, where <em>A</em> is a finite Abelian group and <em>α</em> is a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning from a family <span><math><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of certain nonempty vertex subsets of <em>G</em> to <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. We introduce the concepts of <em>b</em>-compatible graph and <em>b</em>-compatible broken bond to give an explicit formula for the assigning polynomials and to examine their coefficients. More specifically, for a function <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span>, let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> be a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning of <em>G</em> such that for each <span><math><mi>X</mi><mo>∈</mo><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> if and only if <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>X</mi></mrow></msub><mi>b</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We show that for any <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning <em>α</em> of <em>G</em>, if there exists a function <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span> such that <em>G</em> is <em>b</em>-compatible and <span><math><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, then the assigning polynomial <span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo></math></span> has the <em>b</em>-compatible spanning subgraph expansion<span><span><span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mtable><mtr><mtd><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>G</mi><mo>−</mo><mi>S</mi><mrow><mtext> is</mtext><mspace></mspace><mtext>b</mtext><mtext>-compatible</mtext></mrow></mtd></mtr></mtable></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mi>m</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></msup><mo>,</mo></math></span></span></span> and is the following form<span><span><span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>i</mi></mrow></msup><mo>,</mo></math></span></span></span> where each <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> is the number of subsets <em>S</em> of <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> having <em>i</em> edges such that <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span> is <em>b</em>-compatible and <em>S</em> contains no <em>b</em>-compatible broken bonds with respect to a total order on <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Applying the counting interpretation, we also obtain unified comparison relations for the signless coefficients of assigning polynomials. Namely, for any <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assignings <span><math><mi>α</mi><mo>,</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <em>G</em>, if there exist functions <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span> and <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that <em>G</em> is both <em>b</em>-compatible and <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>-compatible, <span><math><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span> and <span><math><mi>α</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>≤</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for all <span><math><mi>X</mi><mo>∈</mo><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, then<span><span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mspace></mspace><mtext> for </mtext><mspace></mspace><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>.</mo></math></span></span></span></div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102901"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting flows of b-compatible graphs\",\"authors\":\"Houshan Fu , Xiangyu Ren , Suijie Wang\",\"doi\":\"10.1016/j.aam.2025.102901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kochol introduced the assigning polynomial <span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo></math></span> to count nowhere-zero <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-flows of a graph <em>G</em>, where <em>A</em> is a finite Abelian group and <em>α</em> is a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning from a family <span><math><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of certain nonempty vertex subsets of <em>G</em> to <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. We introduce the concepts of <em>b</em>-compatible graph and <em>b</em>-compatible broken bond to give an explicit formula for the assigning polynomials and to examine their coefficients. More specifically, for a function <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span>, let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> be a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning of <em>G</em> such that for each <span><math><mi>X</mi><mo>∈</mo><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> if and only if <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>X</mi></mrow></msub><mi>b</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We show that for any <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assigning <em>α</em> of <em>G</em>, if there exists a function <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span> such that <em>G</em> is <em>b</em>-compatible and <span><math><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, then the assigning polynomial <span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo></math></span> has the <em>b</em>-compatible spanning subgraph expansion<span><span><span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mtable><mtr><mtd><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>G</mi><mo>−</mo><mi>S</mi><mrow><mtext> is</mtext><mspace></mspace><mtext>b</mtext><mtext>-compatible</mtext></mrow></mtd></mtr></mtable></mrow></munder><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></msup><msup><mrow><mi>k</mi></mrow><mrow><mi>m</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></msup><mo>,</mo></math></span></span></span> and is the following form<span><span><span><math><mi>F</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>;</mo><mi>k</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>i</mi></mrow></msup><mo>,</mo></math></span></span></span> where each <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> is the number of subsets <em>S</em> of <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> having <em>i</em> edges such that <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span> is <em>b</em>-compatible and <em>S</em> contains no <em>b</em>-compatible broken bonds with respect to a total order on <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Applying the counting interpretation, we also obtain unified comparison relations for the signless coefficients of assigning polynomials. Namely, for any <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-assignings <span><math><mi>α</mi><mo>,</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <em>G</em>, if there exist functions <span><math><mi>b</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>A</mi></math></span> and <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that <em>G</em> is both <em>b</em>-compatible and <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>-compatible, <span><math><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span> and <span><math><mi>α</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>≤</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for all <span><math><mi>X</mi><mo>∈</mo><mi>Λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, then<span><span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mspace></mspace><mtext> for </mtext><mspace></mspace><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>.</mo></math></span></span></span></div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"168 \",\"pages\":\"Article 102901\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000636\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000636","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Kochol introduced the assigning polynomial to count nowhere-zero -flows of a graph G, where A is a finite Abelian group and α is a -assigning from a family of certain nonempty vertex subsets of G to . We introduce the concepts of b-compatible graph and b-compatible broken bond to give an explicit formula for the assigning polynomials and to examine their coefficients. More specifically, for a function , let be a -assigning of G such that for each , if and only if . We show that for any -assigning α of G, if there exists a function such that G is b-compatible and , then the assigning polynomial has the b-compatible spanning subgraph expansion and is the following form where each is the number of subsets S of having i edges such that is b-compatible and S contains no b-compatible broken bonds with respect to a total order on . Applying the counting interpretation, we also obtain unified comparison relations for the signless coefficients of assigning polynomials. Namely, for any -assignings of G, if there exist functions and such that G is both b-compatible and -compatible, , and for all , then
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.