给定周长的三角形网格台球系统的最大循环数

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Honglin Zhu
{"title":"给定周长的三角形网格台球系统的最大循环数","authors":"Honglin Zhu","doi":"10.1016/j.aam.2025.102888","DOIUrl":null,"url":null,"abstract":"<div><div>Given a grid polygon <em>P</em> in a grid of equilateral triangles, Defant and Jiradilok considered a billiards system where beams of light bounce around inside <em>P</em>. We study the relationship between the perimeter <span><math><mi>perim</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <em>P</em> and the number of different trajectories <span><math><mi>cyc</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> that the billiards system has. Resolving a conjecture of Defant and Jiradilok, we prove the sharp inequality <span><math><mi>cyc</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>perim</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span> and characterize the equality cases.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102888"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum number of cycles in a triangular-grid billiards system with a given perimeter\",\"authors\":\"Honglin Zhu\",\"doi\":\"10.1016/j.aam.2025.102888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a grid polygon <em>P</em> in a grid of equilateral triangles, Defant and Jiradilok considered a billiards system where beams of light bounce around inside <em>P</em>. We study the relationship between the perimeter <span><math><mi>perim</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <em>P</em> and the number of different trajectories <span><math><mi>cyc</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> that the billiards system has. Resolving a conjecture of Defant and Jiradilok, we prove the sharp inequality <span><math><mi>cyc</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>perim</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span> and characterize the equality cases.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"168 \",\"pages\":\"Article 102888\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000508\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000508","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定等边三角形网格中的一个网格多边形P, Defant和Jiradilok考虑了一个台球系统,其中光束在P内反弹。我们研究了P的周长(P)与台球系统中不同轨迹周期(P)的数量之间的关系。解决了Defant和Jiradilok的一个猜想,证明了尖锐不等式cyc(P)≤(perim(P)+2)/4,并刻画了相等情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The maximum number of cycles in a triangular-grid billiards system with a given perimeter
Given a grid polygon P in a grid of equilateral triangles, Defant and Jiradilok considered a billiards system where beams of light bounce around inside P. We study the relationship between the perimeter perim(P) of P and the number of different trajectories cyc(P) that the billiards system has. Resolving a conjecture of Defant and Jiradilok, we prove the sharp inequality cyc(P)(perim(P)+2)/4 and characterize the equality cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信