{"title":"锥体的表征及在决策理论中的应用","authors":"Paolo Leonetti , Giulio Principi","doi":"10.1016/j.jmaa.2025.129561","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>C</em> be a cone in a locally convex Hausdorff topological vector space <em>X</em> containing 0. We show that there exists a (essentially unique) nonempty family <span><math><mi>K</mi></math></span> of nonempty subsets of the topological dual <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that<span><span><span><math><mi>C</mi><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mo>∀</mo><mi>K</mi><mo>∈</mo><mi>K</mi><mo>,</mo><mo>∃</mo><mi>f</mi><mo>∈</mo><mi>K</mi><mo>,</mo><mspace></mspace><mspace></mspace><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>0</mn><mo>}</mo><mo>.</mo></math></span></span></span> Then, we identify the additional properties on the family <span><math><mi>K</mi></math></span> which characterize, among others, closed convex cones, open convex cones, closed cones, and convex cones. For instance, if <em>X</em> is a Banach space, then <em>C</em> is a closed cone if and only if the family <span><math><mi>K</mi></math></span> can be chosen with nonempty convex compact sets. These representations provide abstract versions of several recent results in decision theory and give us the proper framework to obtain new ones. This allows us to characterize preorders which satisfy the independence axiom over certain probability measures, answering an open question in Hara et al. (2019) <span><span>[20]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129561"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representations of cones and applications to decision theory\",\"authors\":\"Paolo Leonetti , Giulio Principi\",\"doi\":\"10.1016/j.jmaa.2025.129561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>C</em> be a cone in a locally convex Hausdorff topological vector space <em>X</em> containing 0. We show that there exists a (essentially unique) nonempty family <span><math><mi>K</mi></math></span> of nonempty subsets of the topological dual <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that<span><span><span><math><mi>C</mi><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mo>∀</mo><mi>K</mi><mo>∈</mo><mi>K</mi><mo>,</mo><mo>∃</mo><mi>f</mi><mo>∈</mo><mi>K</mi><mo>,</mo><mspace></mspace><mspace></mspace><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>0</mn><mo>}</mo><mo>.</mo></math></span></span></span> Then, we identify the additional properties on the family <span><math><mi>K</mi></math></span> which characterize, among others, closed convex cones, open convex cones, closed cones, and convex cones. For instance, if <em>X</em> is a Banach space, then <em>C</em> is a closed cone if and only if the family <span><math><mi>K</mi></math></span> can be chosen with nonempty convex compact sets. These representations provide abstract versions of several recent results in decision theory and give us the proper framework to obtain new ones. This allows us to characterize preorders which satisfy the independence axiom over certain probability measures, answering an open question in Hara et al. (2019) <span><span>[20]</span></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129561\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003427\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003427","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 C 是局部凸的豪斯多夫拓扑向量空间 X 中的一个圆锥,包含 0。我们证明存在一个拓扑对偶 X′的非空子集的(本质上唯一的)非空族 K,使得 C={x∈X:∀K∈K,∃f∈K,f(x)≥0}。然后,我们确定 K 族的附加性质,这些性质是封闭凸锥、开放凸锥、封闭锥和凸锥等的特征。例如,如果 X 是一个 Banach 空间,那么只有当且仅当族 K 可以选择非空的凸紧凑集时,C 才是一个闭锥。这些表示法提供了决策理论中若干最新结果的抽象版本,并为我们获得新结果提供了适当的框架。这使我们能够描述满足某些概率度量的独立性公理的预序,回答了 Hara 等(2019)[20] 中的一个开放问题。
Representations of cones and applications to decision theory
Let C be a cone in a locally convex Hausdorff topological vector space X containing 0. We show that there exists a (essentially unique) nonempty family of nonempty subsets of the topological dual such that Then, we identify the additional properties on the family which characterize, among others, closed convex cones, open convex cones, closed cones, and convex cones. For instance, if X is a Banach space, then C is a closed cone if and only if the family can be chosen with nonempty convex compact sets. These representations provide abstract versions of several recent results in decision theory and give us the proper framework to obtain new ones. This allows us to characterize preorders which satisfy the independence axiom over certain probability measures, answering an open question in Hara et al. (2019) [20].
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.