增强潜热储存:几何修改的影响,s形外壳壁,和l形鳍

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Houssam Eddine Abdellatif , Shan Ali Khan , Nahid Fatima , M.A. Aljohani , Adeel Arshad , Ahmed Belaadi , Abdullah Alhushaybari
{"title":"增强潜热储存:几何修改的影响,s形外壳壁,和l形鳍","authors":"Houssam Eddine Abdellatif ,&nbsp;Shan Ali Khan ,&nbsp;Nahid Fatima ,&nbsp;M.A. Aljohani ,&nbsp;Adeel Arshad ,&nbsp;Ahmed Belaadi ,&nbsp;Abdullah Alhushaybari","doi":"10.1016/j.mtsust.2025.101114","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the thermal performance and phase change behavior of five thermal energy storage (TES) models with varied geometric and design parameters, aiming to enhance heat transfer and storage efficiency.The impact of an innovative S-shaped heat source wall configuration and L-shaped fins on phase change dynamics was examined through numerical simulations, presenting a novel approach to enhancing TES system designs. Temperature distribution, transient PCM temperature, velocity fields, and liquid fraction evolution were analyzed to evaluate melting time, energy storage density (<em>SE</em><sub><em>m</em></sub>), mean power (<em>P</em><sub><em>m</em></sub>), and total heat storage capacity. The findings indicate that geometric enhancements and fin configurations significantly influence phase change performance. Model 01 exhibited the longest melting time of 11,040 s, whereas Model 05, with enhanced thinner (0.3 mm) and longer (112.3 mm) fins, achieved the shortest melting time of 2,720 s, reducing melting time by 75.36 %. Model 05 also demonstrated the highest <em>SE</em><sub><em>m</em></sub>of 274.12 kJ/kg and <em>Pm</em> of 67.72 W, highlighting its superior thermal storage efficiency. These results emphasize the crucial role of fin geometry and enclosure profiles in improving TES system performance.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"30 ","pages":"Article 101114"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing latent heat storage: Impact of geometric modifications, S-shaped enclosure walls, and L-shaped fins\",\"authors\":\"Houssam Eddine Abdellatif ,&nbsp;Shan Ali Khan ,&nbsp;Nahid Fatima ,&nbsp;M.A. Aljohani ,&nbsp;Adeel Arshad ,&nbsp;Ahmed Belaadi ,&nbsp;Abdullah Alhushaybari\",\"doi\":\"10.1016/j.mtsust.2025.101114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the thermal performance and phase change behavior of five thermal energy storage (TES) models with varied geometric and design parameters, aiming to enhance heat transfer and storage efficiency.The impact of an innovative S-shaped heat source wall configuration and L-shaped fins on phase change dynamics was examined through numerical simulations, presenting a novel approach to enhancing TES system designs. Temperature distribution, transient PCM temperature, velocity fields, and liquid fraction evolution were analyzed to evaluate melting time, energy storage density (<em>SE</em><sub><em>m</em></sub>), mean power (<em>P</em><sub><em>m</em></sub>), and total heat storage capacity. The findings indicate that geometric enhancements and fin configurations significantly influence phase change performance. Model 01 exhibited the longest melting time of 11,040 s, whereas Model 05, with enhanced thinner (0.3 mm) and longer (112.3 mm) fins, achieved the shortest melting time of 2,720 s, reducing melting time by 75.36 %. Model 05 also demonstrated the highest <em>SE</em><sub><em>m</em></sub>of 274.12 kJ/kg and <em>Pm</em> of 67.72 W, highlighting its superior thermal storage efficiency. These results emphasize the crucial role of fin geometry and enclosure profiles in improving TES system performance.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"30 \",\"pages\":\"Article 101114\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234725000430\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000430","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了五种具有不同几何和设计参数的热能储存(TES)模型的热性能和相变行为,旨在提高传热和储存效率。通过数值模拟,研究了创新的 S 型热源壁配置和 L 型鳍片对相变动力学的影响,提出了一种改进 TES 系统设计的新方法。通过分析温度分布、瞬态 PCM 温度、速度场和液体组分演变,评估了熔化时间、储能密度 (SEm)、平均功率 (Pm) 和总储热量。研究结果表明,几何增强和鳍片配置对相变性能有显著影响。模型 01 的熔化时间最长,为 11,040 秒,而模型 05 的翅片更薄(0.3 毫米)、更长(112.3 毫米),熔化时间最短,为 2,720 秒,熔化时间缩短了 75.36%。05 型还显示出最高的 SEmof 274.12 kJ/kg,Pm 为 67.72 W,凸显了其卓越的热存储效率。这些结果凸显了翅片几何形状和外壳轮廓在提高 TES 系统性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing latent heat storage: Impact of geometric modifications, S-shaped enclosure walls, and L-shaped fins
This study explores the thermal performance and phase change behavior of five thermal energy storage (TES) models with varied geometric and design parameters, aiming to enhance heat transfer and storage efficiency.The impact of an innovative S-shaped heat source wall configuration and L-shaped fins on phase change dynamics was examined through numerical simulations, presenting a novel approach to enhancing TES system designs. Temperature distribution, transient PCM temperature, velocity fields, and liquid fraction evolution were analyzed to evaluate melting time, energy storage density (SEm), mean power (Pm), and total heat storage capacity. The findings indicate that geometric enhancements and fin configurations significantly influence phase change performance. Model 01 exhibited the longest melting time of 11,040 s, whereas Model 05, with enhanced thinner (0.3 mm) and longer (112.3 mm) fins, achieved the shortest melting time of 2,720 s, reducing melting time by 75.36 %. Model 05 also demonstrated the highest SEmof 274.12 kJ/kg and Pm of 67.72 W, highlighting its superior thermal storage efficiency. These results emphasize the crucial role of fin geometry and enclosure profiles in improving TES system performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信