铝含量对 TiAlSiN 涂层微观结构、机械性能、热稳定性和抗氧化性的影响

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
Chao L. Li , Jin Z. Gu , Jie Zhang , Qing Mu , Li Chen , Chun Hu
{"title":"铝含量对 TiAlSiN 涂层微观结构、机械性能、热稳定性和抗氧化性的影响","authors":"Chao L. Li ,&nbsp;Jin Z. Gu ,&nbsp;Jie Zhang ,&nbsp;Qing Mu ,&nbsp;Li Chen ,&nbsp;Chun Hu","doi":"10.1016/j.surfcoat.2025.132153","DOIUrl":null,"url":null,"abstract":"<div><div>TiAlSiN coatings with high hardness, excellent thermal stability and oxidation resistance have been widely used in machining industry. However, the information about the effect of Al content on the thermal stability of TiAlSiN coatings is limited. Furthermore, many studies changed the Al content together with Si contents when exploring the influence on microstructure and mechanical properties. Here, we deposited Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N (<em>x</em> = 0.02–0.36, <em>y</em> = 0.12–0.13) coatings with different Al contents and almost constant Si contents by cathodic arc deposition. The microstructure, mechanical properties, oxidation resistance and especially thermal stability are investigated. All as-deposited Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N coatings exhibit a single-phase cubic structure. Transmission electron microscope analysis shows that Si substitutes Ti and/or Al to form solid solution structure. Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N coatings show close hardness of ∼ 38 GPa. The increase of Al content effectively improves the ability to maintain high hardness after annealing. When <em>x</em> is below 0.17, the hardness of Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N coatings continuously declines as the annealing temperature increases, but with milder trend corresponding to higher <em>x</em>. Ti<sub>0.55</sub>Al<sub>0.32</sub>Si<sub>0.13</sub>N and Ti<sub>0.51</sub>Al<sub>0.36</sub>Si<sub>0.13</sub>N coatings reveal spinodal decomposition during vacuum annealing, achieving peak hardnesses of 39.3 ± 0.7 GPa at 1000 °C and 39.4 ± 0.6 GPa at 1000 °C, respectively. Furthermore, increasing Al content favors the oxidation resistance of Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N coatings due to the promoted formation of dense Al-rich oxide. The coatings with <em>x</em> = 0.02 and 0.05 initiate oxidation at 800 °C forming anatase (a-) and rutile (r-) TiO<sub>2</sub>, and are fully oxidized into r-TiO<sub>2</sub> at 1100 °C. The coating with <em>x</em> = 0.17 shares the same onset temperature (800 °C), which is fully oxidized into r-TiO<sub>2</sub> and α-Al<sub>2</sub>O<sub>3</sub> at 1100 °C. By contrast, coatings with <em>x</em> = 0.32 and 0.36 exhibit higher oxidation initiation temperature (900 °C), ultimately forming r-TiO<sub>2</sub> and α-Al<sub>2</sub>O<sub>3</sub> at 1100 °C.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"507 ","pages":"Article 132153"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Al content on the microstructure, mechanical properties, thermal stability and oxidation resistance of TiAlSiN coatings\",\"authors\":\"Chao L. Li ,&nbsp;Jin Z. Gu ,&nbsp;Jie Zhang ,&nbsp;Qing Mu ,&nbsp;Li Chen ,&nbsp;Chun Hu\",\"doi\":\"10.1016/j.surfcoat.2025.132153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>TiAlSiN coatings with high hardness, excellent thermal stability and oxidation resistance have been widely used in machining industry. However, the information about the effect of Al content on the thermal stability of TiAlSiN coatings is limited. Furthermore, many studies changed the Al content together with Si contents when exploring the influence on microstructure and mechanical properties. Here, we deposited Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N (<em>x</em> = 0.02–0.36, <em>y</em> = 0.12–0.13) coatings with different Al contents and almost constant Si contents by cathodic arc deposition. The microstructure, mechanical properties, oxidation resistance and especially thermal stability are investigated. All as-deposited Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N coatings exhibit a single-phase cubic structure. Transmission electron microscope analysis shows that Si substitutes Ti and/or Al to form solid solution structure. Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N coatings show close hardness of ∼ 38 GPa. The increase of Al content effectively improves the ability to maintain high hardness after annealing. When <em>x</em> is below 0.17, the hardness of Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N coatings continuously declines as the annealing temperature increases, but with milder trend corresponding to higher <em>x</em>. Ti<sub>0.55</sub>Al<sub>0.32</sub>Si<sub>0.13</sub>N and Ti<sub>0.51</sub>Al<sub>0.36</sub>Si<sub>0.13</sub>N coatings reveal spinodal decomposition during vacuum annealing, achieving peak hardnesses of 39.3 ± 0.7 GPa at 1000 °C and 39.4 ± 0.6 GPa at 1000 °C, respectively. Furthermore, increasing Al content favors the oxidation resistance of Ti<sub>1-x-y</sub>Al<sub>x</sub>Si<sub>y</sub>N coatings due to the promoted formation of dense Al-rich oxide. The coatings with <em>x</em> = 0.02 and 0.05 initiate oxidation at 800 °C forming anatase (a-) and rutile (r-) TiO<sub>2</sub>, and are fully oxidized into r-TiO<sub>2</sub> at 1100 °C. The coating with <em>x</em> = 0.17 shares the same onset temperature (800 °C), which is fully oxidized into r-TiO<sub>2</sub> and α-Al<sub>2</sub>O<sub>3</sub> at 1100 °C. By contrast, coatings with <em>x</em> = 0.32 and 0.36 exhibit higher oxidation initiation temperature (900 °C), ultimately forming r-TiO<sub>2</sub> and α-Al<sub>2</sub>O<sub>3</sub> at 1100 °C.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"507 \",\"pages\":\"Article 132153\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025789722500427X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025789722500427X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

TiAlSiN涂层具有高硬度、优异的热稳定性和抗氧化性,在机械加工行业得到了广泛的应用。然而,关于Al含量对TiAlSiN涂层热稳定性影响的信息有限。此外,许多研究在探索Al含量和Si含量对微观组织和力学性能的影响时,也改变了Al含量。本文采用阴极电弧沉积法制备了Al含量不同、Si含量基本不变的Ti1-x-yAlxSiyN (x = 0.02-0.36, y = 0.12-0.13)涂层。研究了复合材料的显微组织、力学性能、抗氧化性能,特别是热稳定性。所有沉积Ti1-x-yAlxSiyN涂层均为单相立方结构。透射电镜分析表明,Si取代Ti和/或Al形成固溶体结构。Ti1-x-yAlxSiyN涂层的硬度接近于~ 38 GPa。Al含量的增加有效地提高了退火后保持高硬度的能力。当x < 0.17时,Ti1-x-yAlxSiyN涂层的硬度随退火温度的升高而持续下降,但随着x的升高,其下降趋势较为平缓。Ti0.55Al0.32Si0.13N和Ti0.51Al0.36Si0.13N涂层在真空退火过程中出现了spinodal分解,在1000℃和1000℃时的峰值硬度分别为39.3±0.7 GPa和39.4±0.6 GPa。此外,Al含量的增加有利于Ti1-x-yAlxSiyN涂层的抗氧化性,因为它促进了致密富Al氧化物的形成。x = 0.02和0.05的涂层在800℃时开始氧化,形成锐钛矿(a-)和金红石(r-) TiO2,在1100℃时完全氧化成r-TiO2。x = 0.17的涂层具有相同的起始温度(800℃),在1100℃完全氧化为r-TiO2和α-Al2O3。相比之下,x = 0.32和0.36的涂层表现出更高的氧化起始温度(900℃),最终在1100℃形成r-TiO2和α-Al2O3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Al content on the microstructure, mechanical properties, thermal stability and oxidation resistance of TiAlSiN coatings
TiAlSiN coatings with high hardness, excellent thermal stability and oxidation resistance have been widely used in machining industry. However, the information about the effect of Al content on the thermal stability of TiAlSiN coatings is limited. Furthermore, many studies changed the Al content together with Si contents when exploring the influence on microstructure and mechanical properties. Here, we deposited Ti1-x-yAlxSiyN (x = 0.02–0.36, y = 0.12–0.13) coatings with different Al contents and almost constant Si contents by cathodic arc deposition. The microstructure, mechanical properties, oxidation resistance and especially thermal stability are investigated. All as-deposited Ti1-x-yAlxSiyN coatings exhibit a single-phase cubic structure. Transmission electron microscope analysis shows that Si substitutes Ti and/or Al to form solid solution structure. Ti1-x-yAlxSiyN coatings show close hardness of ∼ 38 GPa. The increase of Al content effectively improves the ability to maintain high hardness after annealing. When x is below 0.17, the hardness of Ti1-x-yAlxSiyN coatings continuously declines as the annealing temperature increases, but with milder trend corresponding to higher x. Ti0.55Al0.32Si0.13N and Ti0.51Al0.36Si0.13N coatings reveal spinodal decomposition during vacuum annealing, achieving peak hardnesses of 39.3 ± 0.7 GPa at 1000 °C and 39.4 ± 0.6 GPa at 1000 °C, respectively. Furthermore, increasing Al content favors the oxidation resistance of Ti1-x-yAlxSiyN coatings due to the promoted formation of dense Al-rich oxide. The coatings with x = 0.02 and 0.05 initiate oxidation at 800 °C forming anatase (a-) and rutile (r-) TiO2, and are fully oxidized into r-TiO2 at 1100 °C. The coating with x = 0.17 shares the same onset temperature (800 °C), which is fully oxidized into r-TiO2 and α-Al2O3 at 1100 °C. By contrast, coatings with x = 0.32 and 0.36 exhibit higher oxidation initiation temperature (900 °C), ultimately forming r-TiO2 and α-Al2O3 at 1100 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信