通过格林函数计算整个空间中 2-D Couette 流动的过渡阈值

IF 1.2 3区 数学 Q1 MATHEMATICS
Gaofeng Wang , Weike Wang
{"title":"通过格林函数计算整个空间中 2-D Couette 流动的过渡阈值","authors":"Gaofeng Wang ,&nbsp;Weike Wang","doi":"10.1016/j.jmaa.2025.129585","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the transition threshold problem concerning the 2-D Navier-Stokes equations in the context of Couette flow <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> at high Reynolds number <em>Re</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. By utilizing Green's function estimates for the linearized equations around Couette flow, we initially establish refined dissipation estimates for the linearized Navier-Stokes equations with a precise decay rate <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. As an application, we prove that if the initial perturbation of vorticity satisfies<span><span><span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span></span></span> for some small constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> independent of the viscosity <em>ν</em>, then we can reach the conclusion that the vorticity remains within <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></math></span> of the Couette flow.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129585"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition threshold for the 2-D Couette flow in whole space via Green's function\",\"authors\":\"Gaofeng Wang ,&nbsp;Weike Wang\",\"doi\":\"10.1016/j.jmaa.2025.129585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the transition threshold problem concerning the 2-D Navier-Stokes equations in the context of Couette flow <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> at high Reynolds number <em>Re</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. By utilizing Green's function estimates for the linearized equations around Couette flow, we initially establish refined dissipation estimates for the linearized Navier-Stokes equations with a precise decay rate <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. As an application, we prove that if the initial perturbation of vorticity satisfies<span><span><span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span></span></span> for some small constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> independent of the viscosity <em>ν</em>, then we can reach the conclusion that the vorticity remains within <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></math></span> of the Couette flow.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129585\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2500366X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500366X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了R2中高雷诺数Re下Couette流(y,0)条件下二维Navier-Stokes方程的过渡阈值问题。通过对Couette流线性化方程的格林函数估计,我们初步建立了具有精确衰减率(1+t)−1的线性化Navier-Stokes方程的精细耗散估计。作为一个应用,我们证明了如果涡度的初始摄动满足‖ω0‖L2∩L1≤c0ν34,对于某个不依赖于粘度ν的小常数c0,我们可以得出涡度保持在库埃特流的O(ν34)以内的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transition threshold for the 2-D Couette flow in whole space via Green's function
In this paper, we investigate the transition threshold problem concerning the 2-D Navier-Stokes equations in the context of Couette flow (y,0) at high Reynolds number Re in R2. By utilizing Green's function estimates for the linearized equations around Couette flow, we initially establish refined dissipation estimates for the linearized Navier-Stokes equations with a precise decay rate (1+t)1. As an application, we prove that if the initial perturbation of vorticity satisfiesω0L2L1c0ν34 for some small constant c0 independent of the viscosity ν, then we can reach the conclusion that the vorticity remains within O(ν34) of the Couette flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信