{"title":"通过格林函数计算整个空间中 2-D Couette 流动的过渡阈值","authors":"Gaofeng Wang , Weike Wang","doi":"10.1016/j.jmaa.2025.129585","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the transition threshold problem concerning the 2-D Navier-Stokes equations in the context of Couette flow <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> at high Reynolds number <em>Re</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. By utilizing Green's function estimates for the linearized equations around Couette flow, we initially establish refined dissipation estimates for the linearized Navier-Stokes equations with a precise decay rate <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. As an application, we prove that if the initial perturbation of vorticity satisfies<span><span><span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span></span></span> for some small constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> independent of the viscosity <em>ν</em>, then we can reach the conclusion that the vorticity remains within <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></math></span> of the Couette flow.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129585"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition threshold for the 2-D Couette flow in whole space via Green's function\",\"authors\":\"Gaofeng Wang , Weike Wang\",\"doi\":\"10.1016/j.jmaa.2025.129585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the transition threshold problem concerning the 2-D Navier-Stokes equations in the context of Couette flow <span><math><mo>(</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> at high Reynolds number <em>Re</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. By utilizing Green's function estimates for the linearized equations around Couette flow, we initially establish refined dissipation estimates for the linearized Navier-Stokes equations with a precise decay rate <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. As an application, we prove that if the initial perturbation of vorticity satisfies<span><span><span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></msub><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span></span></span> for some small constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> independent of the viscosity <em>ν</em>, then we can reach the conclusion that the vorticity remains within <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></math></span> of the Couette flow.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129585\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2500366X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500366X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Transition threshold for the 2-D Couette flow in whole space via Green's function
In this paper, we investigate the transition threshold problem concerning the 2-D Navier-Stokes equations in the context of Couette flow at high Reynolds number Re in . By utilizing Green's function estimates for the linearized equations around Couette flow, we initially establish refined dissipation estimates for the linearized Navier-Stokes equations with a precise decay rate . As an application, we prove that if the initial perturbation of vorticity satisfies for some small constant independent of the viscosity ν, then we can reach the conclusion that the vorticity remains within of the Couette flow.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.