使用机器学习模型预测垃圾填埋场内部职业苯暴露水平

IF 5.4 Q2 ENGINEERING, ENVIRONMENTAL
Yanjun Liu , Zefei Yang , Jingyao Chen , Huiyuan Yang , Yujia He , Zhengju Lv , Junbo Wang , Jianbing Wang
{"title":"使用机器学习模型预测垃圾填埋场内部职业苯暴露水平","authors":"Yanjun Liu ,&nbsp;Zefei Yang ,&nbsp;Jingyao Chen ,&nbsp;Huiyuan Yang ,&nbsp;Yujia He ,&nbsp;Zhengju Lv ,&nbsp;Junbo Wang ,&nbsp;Jianbing Wang","doi":"10.1016/j.hazadv.2025.100719","DOIUrl":null,"url":null,"abstract":"<div><div>Landfills are significant sources of fugitive benzene release, posing a threat to the health of occupational populations. In this study, long-term monitoring of both external and internal benzene occupational exposure was conducted at a municipal solid waste (MSW) landfill site. The annual average concentration of benzene exposure in the landfill was 0.78 ± 1.08 μg/m³, with a notable increase in autumn (1.40 ± 5.29 μg/m³). The internal biomarker level (urinary t, t-muconic acid) significantly increased post-shift for the occupational population (6.65 ± 50.75 mg/g cr) compared to pre-shift (5.32 ± 31.62 mg/g cr, <em>p</em> &lt; 0.05), exceeding the American Conference of Government Industrial Hygienists (ACGIH) limit by 13 times (0.5 mg/g cr). Machine learning models, particularly the Support Vector Regression (SVR) algorithm, outperformed traditional methods (e.g., Michaelis-Menten) in predicting internal exposure (R² = 0.989, root mean square error = 0.085). Using the SVR model, the predicted internal benzene level under the occupational exposure limit (1.7 mg/m³) was 1.65 mg/g cr, exceeding the ACGIH limit by three-fold. These findings provide a novel framework for benzene exposure risk assessment and inform targeted landfill management strategies.</div></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"18 ","pages":"Article 100719"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting internal occupational benzene exposure levels in landfills using machine learning models\",\"authors\":\"Yanjun Liu ,&nbsp;Zefei Yang ,&nbsp;Jingyao Chen ,&nbsp;Huiyuan Yang ,&nbsp;Yujia He ,&nbsp;Zhengju Lv ,&nbsp;Junbo Wang ,&nbsp;Jianbing Wang\",\"doi\":\"10.1016/j.hazadv.2025.100719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Landfills are significant sources of fugitive benzene release, posing a threat to the health of occupational populations. In this study, long-term monitoring of both external and internal benzene occupational exposure was conducted at a municipal solid waste (MSW) landfill site. The annual average concentration of benzene exposure in the landfill was 0.78 ± 1.08 μg/m³, with a notable increase in autumn (1.40 ± 5.29 μg/m³). The internal biomarker level (urinary t, t-muconic acid) significantly increased post-shift for the occupational population (6.65 ± 50.75 mg/g cr) compared to pre-shift (5.32 ± 31.62 mg/g cr, <em>p</em> &lt; 0.05), exceeding the American Conference of Government Industrial Hygienists (ACGIH) limit by 13 times (0.5 mg/g cr). Machine learning models, particularly the Support Vector Regression (SVR) algorithm, outperformed traditional methods (e.g., Michaelis-Menten) in predicting internal exposure (R² = 0.989, root mean square error = 0.085). Using the SVR model, the predicted internal benzene level under the occupational exposure limit (1.7 mg/m³) was 1.65 mg/g cr, exceeding the ACGIH limit by three-fold. These findings provide a novel framework for benzene exposure risk assessment and inform targeted landfill management strategies.</div></div>\",\"PeriodicalId\":73763,\"journal\":{\"name\":\"Journal of hazardous materials advances\",\"volume\":\"18 \",\"pages\":\"Article 100719\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772416625001317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416625001317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

垃圾填埋场是挥发性苯释放的重要来源,对职业人群的健康构成威胁。在本研究中,在城市固体废物(MSW)填埋场进行了长期监测外和内苯职业暴露。年平均苯暴露浓度为0.78±1.08 μg/m³,秋季增加明显(1.40±5.29 μg/m³)。与轮班前(5.32±31.62 mg/g cr)相比,轮班后职业人群的内部生物标志物水平(尿t, t-粘膜酸)显著升高(6.65±50.75 mg/g cr), p <;0.05),超过美国政府工业卫生学家会议(ACGIH)限值的13倍(0.5 mg/g / cr)。机器学习模型,特别是支持向量回归(SVR)算法,在预测内部暴露方面优于传统方法(例如Michaelis-Menten) (R²= 0.989,均方根误差= 0.085)。应用SVR模型预测,在职业暴露限值(1.7 mg/m³)下,室内苯浓度为1.65 mg/g cr,超出ACGIH限值3倍。这些发现为苯暴露风险评估提供了一个新的框架,并为有针对性的垃圾填埋场管理策略提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting internal occupational benzene exposure levels in landfills using machine learning models

Predicting internal occupational benzene exposure levels in landfills using machine learning models
Landfills are significant sources of fugitive benzene release, posing a threat to the health of occupational populations. In this study, long-term monitoring of both external and internal benzene occupational exposure was conducted at a municipal solid waste (MSW) landfill site. The annual average concentration of benzene exposure in the landfill was 0.78 ± 1.08 μg/m³, with a notable increase in autumn (1.40 ± 5.29 μg/m³). The internal biomarker level (urinary t, t-muconic acid) significantly increased post-shift for the occupational population (6.65 ± 50.75 mg/g cr) compared to pre-shift (5.32 ± 31.62 mg/g cr, p < 0.05), exceeding the American Conference of Government Industrial Hygienists (ACGIH) limit by 13 times (0.5 mg/g cr). Machine learning models, particularly the Support Vector Regression (SVR) algorithm, outperformed traditional methods (e.g., Michaelis-Menten) in predicting internal exposure (R² = 0.989, root mean square error = 0.085). Using the SVR model, the predicted internal benzene level under the occupational exposure limit (1.7 mg/m³) was 1.65 mg/g cr, exceeding the ACGIH limit by three-fold. These findings provide a novel framework for benzene exposure risk assessment and inform targeted landfill management strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of hazardous materials advances
Journal of hazardous materials advances Environmental Engineering
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
50 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信