Mingxin Qiao , Bin Cheng , Weimin Wu , Yanhua Liu , Jian Wang , Xibo Pei , Zhou Zhu , Qianbing Wan
{"title":"弹性囊状水凝胶敷料,通过MOF活化墨水喷涂,对活动伤口具有反应性抗菌和促愈合作用","authors":"Mingxin Qiao , Bin Cheng , Weimin Wu , Yanhua Liu , Jian Wang , Xibo Pei , Zhou Zhu , Qianbing Wan","doi":"10.1016/j.biomaterials.2025.123318","DOIUrl":null,"url":null,"abstract":"<div><div>In daily life, sports frequently cause skin injuries, particularly in movable parts such as joints. However, the frequent movement of joints can impede the proper fitting of dressings, resulting in re-tearing of the wound, an increased infection risk, and prolonged healing. Moreover, demand for skin wound dressings in movable parts has risen, as around 2.4 million joint surgeries are performed annually. Therefore, it is crucial to design an elastic wound dressing that can accommodate repeated joint movements and control wound infection responsively. In this study, a biomimetic hydrogel dressing was designed based on the inkjet behaviour of the elastic ink sac of cuttlefish through repeated extrusion. This dressing comprises a highly elastic polyether F127 diacrylate-based ink sac with micro-nozzles, along with antibacterial and pro-healing ink, metal-organic framework modified gelatin, possessing responsive release properties. With the movement rhythm, the super-elastic dressing perfectly conforms to the wounds in joints or other movable parts to absorb exudation and release therapeutic ink in response to the microenvironment to prevent infection. In conclusion, the biomimetic dressing demonstrates excellent mechanical properties with a deformation of approximately 400 %, and attains an antibacterial rate exceeding 95 %. Compared with the control group, collagen production increases by 2.6 times, and the wound healing speed is enhanced by over 20 %. Therefore, the application of the biomimetic dressing is anticipated to offer a novel approach for managing skin infection wounds in movable parts.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123318"},"PeriodicalIF":12.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic sac-shaped hydrogel dressing with responsive antibacterial and pro-healing in movable wounds via MOF activated ink spraying\",\"authors\":\"Mingxin Qiao , Bin Cheng , Weimin Wu , Yanhua Liu , Jian Wang , Xibo Pei , Zhou Zhu , Qianbing Wan\",\"doi\":\"10.1016/j.biomaterials.2025.123318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In daily life, sports frequently cause skin injuries, particularly in movable parts such as joints. However, the frequent movement of joints can impede the proper fitting of dressings, resulting in re-tearing of the wound, an increased infection risk, and prolonged healing. Moreover, demand for skin wound dressings in movable parts has risen, as around 2.4 million joint surgeries are performed annually. Therefore, it is crucial to design an elastic wound dressing that can accommodate repeated joint movements and control wound infection responsively. In this study, a biomimetic hydrogel dressing was designed based on the inkjet behaviour of the elastic ink sac of cuttlefish through repeated extrusion. This dressing comprises a highly elastic polyether F127 diacrylate-based ink sac with micro-nozzles, along with antibacterial and pro-healing ink, metal-organic framework modified gelatin, possessing responsive release properties. With the movement rhythm, the super-elastic dressing perfectly conforms to the wounds in joints or other movable parts to absorb exudation and release therapeutic ink in response to the microenvironment to prevent infection. In conclusion, the biomimetic dressing demonstrates excellent mechanical properties with a deformation of approximately 400 %, and attains an antibacterial rate exceeding 95 %. Compared with the control group, collagen production increases by 2.6 times, and the wound healing speed is enhanced by over 20 %. Therefore, the application of the biomimetic dressing is anticipated to offer a novel approach for managing skin infection wounds in movable parts.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"321 \",\"pages\":\"Article 123318\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961225002376\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002376","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Elastic sac-shaped hydrogel dressing with responsive antibacterial and pro-healing in movable wounds via MOF activated ink spraying
In daily life, sports frequently cause skin injuries, particularly in movable parts such as joints. However, the frequent movement of joints can impede the proper fitting of dressings, resulting in re-tearing of the wound, an increased infection risk, and prolonged healing. Moreover, demand for skin wound dressings in movable parts has risen, as around 2.4 million joint surgeries are performed annually. Therefore, it is crucial to design an elastic wound dressing that can accommodate repeated joint movements and control wound infection responsively. In this study, a biomimetic hydrogel dressing was designed based on the inkjet behaviour of the elastic ink sac of cuttlefish through repeated extrusion. This dressing comprises a highly elastic polyether F127 diacrylate-based ink sac with micro-nozzles, along with antibacterial and pro-healing ink, metal-organic framework modified gelatin, possessing responsive release properties. With the movement rhythm, the super-elastic dressing perfectly conforms to the wounds in joints or other movable parts to absorb exudation and release therapeutic ink in response to the microenvironment to prevent infection. In conclusion, the biomimetic dressing demonstrates excellent mechanical properties with a deformation of approximately 400 %, and attains an antibacterial rate exceeding 95 %. Compared with the control group, collagen production increases by 2.6 times, and the wound healing speed is enhanced by over 20 %. Therefore, the application of the biomimetic dressing is anticipated to offer a novel approach for managing skin infection wounds in movable parts.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.