关于函子不存在性的注解

IF 0.8 2区 数学 Q2 MATHEMATICS
E. Dror Farjoun , S.O. Ivanov , A. Krasilnikov , A. Zaikovskii
{"title":"关于函子不存在性的注解","authors":"E. Dror Farjoun ,&nbsp;S.O. Ivanov ,&nbsp;A. Krasilnikov ,&nbsp;A. Zaikovskii","doi":"10.1016/j.jalgebra.2025.03.037","DOIUrl":null,"url":null,"abstract":"<div><div>We consider several types of non-existence theorems for functors. For example, there are no nontrivial functors from the category of groups (or the category of pointed sets, or vector spaces) to any small category. In addition, we consider questions about nonexistence of subfunctors and quotients of the identity functor on the category of groups (or abelian groups). For example, we show that there are no natural non-trivial abelian subgroup of a group, nor a natural perfect quotient group of a group. More generally, we prove that natural subgroups, i.e. values of a sub-functor of the identity functor on groups, cannot all belong to a proper reflective subcategory. As an auxiliary result we prove that, for any non-trivial subfunctor <em>F</em> of the identity functor on the category of groups, any group can be embedded into a simple group that lies in the essential image of <em>F</em>.</div><div>The paper concludes with a few questions regarding the non-existence of certain (co-)augmented functors in the ∞-category of spaces.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"675 ","pages":"Pages 273-288"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the non-existence of functors\",\"authors\":\"E. Dror Farjoun ,&nbsp;S.O. Ivanov ,&nbsp;A. Krasilnikov ,&nbsp;A. Zaikovskii\",\"doi\":\"10.1016/j.jalgebra.2025.03.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider several types of non-existence theorems for functors. For example, there are no nontrivial functors from the category of groups (or the category of pointed sets, or vector spaces) to any small category. In addition, we consider questions about nonexistence of subfunctors and quotients of the identity functor on the category of groups (or abelian groups). For example, we show that there are no natural non-trivial abelian subgroup of a group, nor a natural perfect quotient group of a group. More generally, we prove that natural subgroups, i.e. values of a sub-functor of the identity functor on groups, cannot all belong to a proper reflective subcategory. As an auxiliary result we prove that, for any non-trivial subfunctor <em>F</em> of the identity functor on the category of groups, any group can be embedded into a simple group that lies in the essential image of <em>F</em>.</div><div>The paper concludes with a few questions regarding the non-existence of certain (co-)augmented functors in the ∞-category of spaces.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"675 \",\"pages\":\"Pages 273-288\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325001851\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001851","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了函子的几种不存在定理。例如,从群的范畴(或点集合的范畴,或向量空间的范畴)到任何小范畴都没有非平凡函子。此外,我们考虑了群(或阿贝尔群)范畴上恒等函子和商的子函子不存在的问题。例如,我们证明了一个群不存在自然的非平凡阿贝尔子群,也不存在群的自然完美商群。更一般地,我们证明了自然子群,即群上恒等函子的子函子的值,不能都属于固有反射子范畴。作为辅助结果,我们证明了群的范畴上的恒等函子的任何非平凡子函子F,任何群都可以嵌入到F的本质象上的一个简单群中。本文最后给出了空间的∞范畴上某些(协)增广函子不存在的几个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the non-existence of functors
We consider several types of non-existence theorems for functors. For example, there are no nontrivial functors from the category of groups (or the category of pointed sets, or vector spaces) to any small category. In addition, we consider questions about nonexistence of subfunctors and quotients of the identity functor on the category of groups (or abelian groups). For example, we show that there are no natural non-trivial abelian subgroup of a group, nor a natural perfect quotient group of a group. More generally, we prove that natural subgroups, i.e. values of a sub-functor of the identity functor on groups, cannot all belong to a proper reflective subcategory. As an auxiliary result we prove that, for any non-trivial subfunctor F of the identity functor on the category of groups, any group can be embedded into a simple group that lies in the essential image of F.
The paper concludes with a few questions regarding the non-existence of certain (co-)augmented functors in the ∞-category of spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信