通过钨的多维调控,相变型钒催化剂上苯直接羟基化为苯酚

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peng Dong*, Yang Xin, Xiaohui Zhang, Tingna Shao, Xiaorui Wang* and Guixian Li, 
{"title":"通过钨的多维调控,相变型钒催化剂上苯直接羟基化为苯酚","authors":"Peng Dong*,&nbsp;Yang Xin,&nbsp;Xiaohui Zhang,&nbsp;Tingna Shao,&nbsp;Xiaorui Wang* and Guixian Li,&nbsp;","doi":"10.1021/acssuschemeng.5c0112010.1021/acssuschemeng.5c01120","DOIUrl":null,"url":null,"abstract":"<p >The hydroxylation of inert benzene through the activation of the C<sub>sp2</sub>–H bond is a representative reaction involving the transformation of C–H bonds to C–O bonds. Despite its far-reaching guiding significance, this process remains a complex scientific challenge. This issue was effectively addressed by achieving the hydroxylation of benzene with H<sub>2</sub>O<sub>2</sub> into phenol utilizing a phase transition type catalyst of the VO<sub><i>x</i></sub>-WO<sub>3</sub> series. This catalyst proved to be an efficient and economical synthesis route and presented a phenol yield of 90.2% (conversion &gt;91%). This represents the highest conversion, which is attributed to the unique properties of the VO<sub><i>x</i></sub>-WO<sub>3</sub> catalyst. In summary, the reaction path was optimized via the phase transformation of the catalyst at 70 °C. Herein, the introduction of tungsten regulates the acidity of the catalyst and the valence state of vanadium. Furthermore, it protects vanadium and forms a more active V–O–W active site, promoting the efficient transformation of the reaction.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 14","pages":"5420–5433 5420–5433"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immediate Hydroxylation of Benzene to Phenol over a Phase-Transition-Type Vanadium Catalyst via Multidimensional Regulation of Tungsten\",\"authors\":\"Peng Dong*,&nbsp;Yang Xin,&nbsp;Xiaohui Zhang,&nbsp;Tingna Shao,&nbsp;Xiaorui Wang* and Guixian Li,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c0112010.1021/acssuschemeng.5c01120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The hydroxylation of inert benzene through the activation of the C<sub>sp2</sub>–H bond is a representative reaction involving the transformation of C–H bonds to C–O bonds. Despite its far-reaching guiding significance, this process remains a complex scientific challenge. This issue was effectively addressed by achieving the hydroxylation of benzene with H<sub>2</sub>O<sub>2</sub> into phenol utilizing a phase transition type catalyst of the VO<sub><i>x</i></sub>-WO<sub>3</sub> series. This catalyst proved to be an efficient and economical synthesis route and presented a phenol yield of 90.2% (conversion &gt;91%). This represents the highest conversion, which is attributed to the unique properties of the VO<sub><i>x</i></sub>-WO<sub>3</sub> catalyst. In summary, the reaction path was optimized via the phase transformation of the catalyst at 70 °C. Herein, the introduction of tungsten regulates the acidity of the catalyst and the valence state of vanadium. Furthermore, it protects vanadium and forms a more active V–O–W active site, promoting the efficient transformation of the reaction.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 14\",\"pages\":\"5420–5433 5420–5433\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c01120\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c01120","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过活化 Csp2-H 键对惰性苯进行羟基化反应是将 C-H 键转化为 C-O 键的代表性反应。尽管这一过程具有深远的指导意义,但仍然是一个复杂的科学难题。利用 VOx-WO3 系列的相变型催化剂实现了苯与 H2O2 的羟基化反应,从而有效地解决了这一问题。事实证明,这种催化剂是一种高效、经济的合成路线,苯酚产量为 90.2%(转化率为 91%)。这代表了最高的转化率,这归功于 VOx-WO3 催化剂的独特性能。总之,通过催化剂在 70 °C 下的相变,反应路径得到了优化。其中,钨的引入调节了催化剂的酸度和钒的价态。此外,钨还能保护钒,形成更活跃的 V-O-W 活性位点,促进反应的高效转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Immediate Hydroxylation of Benzene to Phenol over a Phase-Transition-Type Vanadium Catalyst via Multidimensional Regulation of Tungsten

Immediate Hydroxylation of Benzene to Phenol over a Phase-Transition-Type Vanadium Catalyst via Multidimensional Regulation of Tungsten

The hydroxylation of inert benzene through the activation of the Csp2–H bond is a representative reaction involving the transformation of C–H bonds to C–O bonds. Despite its far-reaching guiding significance, this process remains a complex scientific challenge. This issue was effectively addressed by achieving the hydroxylation of benzene with H2O2 into phenol utilizing a phase transition type catalyst of the VOx-WO3 series. This catalyst proved to be an efficient and economical synthesis route and presented a phenol yield of 90.2% (conversion >91%). This represents the highest conversion, which is attributed to the unique properties of the VOx-WO3 catalyst. In summary, the reaction path was optimized via the phase transformation of the catalyst at 70 °C. Herein, the introduction of tungsten regulates the acidity of the catalyst and the valence state of vanadium. Furthermore, it protects vanadium and forms a more active V–O–W active site, promoting the efficient transformation of the reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信